Exercise 1

1. A $1 \mathrm{GeV} / \mathrm{c}$ electron beam hits a proton target. Calculate:
(a) The velocity of the CMS
(b) The momentum of the proton in the CMS
(c) The available energy
2. Find the names, masses, quark content, dominant decay channel and spectroscopic notation $\left({ }^{2 S+1} L_{J}\right)$ for the following $\mathrm{N}=1$ mesons containing only light (u,d,s) quarks: (Hint: Check PDG book(let) for decays; Find all mesons if there is more than one! Remark: C parity (in $J^{P C}$) is not needed or not defined, thus I removed it from the exercise)
(a) $J^{P}=1^{-}, \mathrm{I}=1$, positive charge
(b) $J^{P}=0^{-}, \mathrm{I}=1 / 2$, uncharged
(c) $J^{P}=0^{-}, \mathrm{I}=0$

Homework

1. Explain in your own words an experiment, with which you can measure the form factor of a proton. What beam and target do you use? Where do you place your detector? What exactly do you measure and on which varying variables is it depending on?
2. Explain in detail and in your own words two methods for measuring the magnetic moment of an hyperon.

Exercise 1 hidehadren physics
No 1

b)

$$
\begin{aligned}
& y=\frac{1}{\left(1-\beta^{2}\right)^{1 / 2}}=1,163
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \vec{V}_{p}=\left(-556 \frac{M_{c l}}{\mathrm{c}}, 0,0\right)
\end{aligned}
$$

c) quailable Energise: in a) catculated: bla $=\mathrm{ma}^{2}=1957 \mathrm{Mv}$

9

Exercise 1 higer hadronphysics Dulicu Beyzuren
$v_{n} 2$
c) $-n, m=547,8$ mel $\frac{c^{2}}{}, c_{1}(u \bar{u}+d \bar{d})+c_{2}(5 \bar{s})$
sxazan

$$
\eta \rightarrow 2 y \quad(39,3 \%)
$$

spectr. not: : $\left(\mathrm{Q}_{9}\right) \quad{ }^{1} \mathrm{~S}_{0}(\mathrm{U})$

$$
-n^{\prime}(958), m=95 \geqslant 6 \frac{\mathrm{MeV}}{\mathrm{c}^{2}} \cup c_{1}(n \bar{u}+d \bar{d})+c_{2}(55)
$$

$$
\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta(44,6 \%) \text { spatr nat : } 180
$$

$$
\left\{\begin{array}{l}
\eta^{\prime}(1295), \quad m=1294 \mathrm{moV} \\
n^{\prime} \rightarrow \pi \\
n \pi^{+} \pi^{-}
\end{array}\right.
$$

a) $-S^{+}(1450)^{\text {not }} N=1, m 65 \mathrm{MeV}$
 ud $v^{-0,5}$
$\rho \rightarrow \pi \pi(\sec n) \subset\left(3^{3} 0_{1}\right)^{3} s n$

$$
\begin{aligned}
& -K_{s}^{0} \rightarrow \pi i 1+(70 \%), k_{\varepsilon}^{0} \rightarrow \pi^{ \pm} e^{\mp \nu}(40 \%)^{1 s_{0}}
\end{aligned}
$$

Higher, hadron physics
Exercise 1
Julian Bergmames
Leg_{3}
(hep) elastic
Electrons scattering on protous/hydrogen-lon $\left(H^{\top}\right)$?
You are setting an electronbeam on a thin protontarget with a certain beamevergy but different solid angles. in which the detector is put. This way you can measure the crossesection with different $|\mathrm{q}|$.
As $\left.\frac{d \sigma}{d \Omega}\right)_{\text {exp }}=\left(\frac{d \sigma}{d \Omega}\right)_{m_{0}+1}^{*}\left|F\left(q^{2}\right)\right|^{2}$, yeld can divide the measure throng the calculated mott cross-section to get the square of absolute value of the proton's form factor.
This shows that the depending unriabiels are the electron beam's energy and the solid angle of the detector. ian can calculate the $\left|F\left(T_{1}^{2}\right)\right|^{2}$-Falter with the Rosenbluth-Formule

$$
\frac{G_{E}^{2}\left(Q^{2}\right)+\tau G_{m}^{2}\left(a^{2}\right)}{\tau+\tau}+2 \tau \cdot G_{\mu}^{2}\left(Q^{2}\right) \tan ^{2}\left(\frac{\theta}{2}\right)
$$

What is a thin protean yajet for H^{+}Ions?

Higher hadron physics
Exercise 1
Julian, Beynnam
The first method is using Primakoff's effelet with the dominant decay mode of the \bar{z}^{\prime} hyperon:
$\wedge \Sigma^{0}$ with z as the atomic number of a nucleus.

$$
\Lambda+z \rightarrow \Sigma^{0}+z, \Sigma^{0} \rightarrow 1^{0}+z
$$

So as Σ^{0} is primarily produced with little transverse moment ump, meassnrement of cross-bection (cads to the determination of its real transition absent.
As the spin precesses around the magnetic fidel, the "spin precession approall" is another, method of deter mining the magnetic moment of Σ^{0}.
The procession angle for unchanged hyperons is calculated with $\phi=\frac{2 \mu}{\rightarrow \mu} \underbrace{\int B d l}$, with μ as magnific moment.

$$
\begin{gathered}
\text { speed of field } \\
\text { hyperon }
\end{gathered}
$$

Using the hyperon Decay we are ableteget the field orientation by observing the process and afterwards, after μ.

Exercises 2.1\&2.2 / Homework 2.3\&2.4

1. A η meson undergoes a Dalitz decay into $e^{+} e^{-} \gamma$. Consider the special case that both the electron and positron get the same kinetic energy.
(a) Consider the η beeing at rest and the gamma having a momentum of $200 \mathrm{MeV} / \mathrm{c}$. How large is the opening angle between the electron and position?
(b) Calculate the invariant mass of the electron-positron pair.
2. Explain (in your own words) Vector Meson Dominance.
(a) Where does it play a role?
(b) What particles are (or can be) involved?
(c) Sketch a feynmann graph to support your arguments.
3. What are the main differences (in terms of physics) in doing DIS with neutrinos compared to electrons?
4. In deep-inelastic scattering (DIS) a proton beam of 800 GeV energy collides with an electron beam of 25 GeV energy. You might use reasonable assumptions and simplifications in the following calculations.
(a) What CM energy does this correspond to?
(b) What electron energy would a you need for the same reaction on a fixed proton target?
(c) What is the "spatial" resolution you have on the proton?
(d) In what kinematics do you have the maximum Q^{2} and how large is it?
(e) What is measured in Bjorken x ?
(f) What is Bjorken scaling? What do you learn from scaling violations?

Na,
a)

$$
\begin{aligned}
& E\left(e^{+}\right)=I\left(e^{-}\right)=\frac{\mu(n)-T(y)}{2}-\frac{547,8 \mu, v-200 \mathrm{~m}, v}{2}, \\
& =173,9 \mu_{\mathrm{c}} \mathrm{v},
\end{aligned}
$$

$$
\left(\vec{p}_{0^{+}}^{4}+\vec{p}_{e^{-}}^{-1}\right)^{2}=\vec{p}_{e^{+}}^{-{ }^{2}}+\vec{p}_{c^{-}}^{2}+2 \cos (\theta) \mid y_{e^{+}} \| \eta_{e} \psi
$$

$$
x_{1} \operatorname{sed} \Rightarrow E \frac{\left(e^{\Sigma}\right)}{c}=\left|p_{e^{r}}\right|
$$

$$
\left(\vec{P}_{e}++\vec{P}_{e}\right)^{2}=\left(P_{e}^{c}, x+P_{e} ; x\right)^{2}+\left(P_{e^{+}}, x+P_{j}-y\right)^{2}+\left(P_{e^{*}, z}+P_{\left.p_{i} ; z z\right)}^{z-P_{i}}\right)^{2}
$$

b)

$$
\begin{aligned}
& q_{\text {(1, }}^{\left(e^{+}\right)}=\left(173,389 \frac{\mathrm{meL}}{\mathrm{c}}, p_{x, 2, \pm}+p_{y}, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{2}=80254,98\left(\frac{\mu \mathrm{cV}}{\mathrm{c}^{2}}\right)^{-200 \frac{\mathrm{mlv}}{\mathrm{c}}}
\end{aligned}
$$

$$
\begin{aligned}
& =40000 \mu, v^{2} / c^{2} \\
& \begin{array}{c}
=40000 \mu, v^{2} / c^{2} \\
\stackrel{1}{=}\left(173,389 \frac{\mu \mathrm{mev}}{\mathrm{c}}\right)^{2} * 2+2 \cos (\theta)\left(173,384 \frac{\mu_{\mathrm{e}} \mathrm{c}}{\mathrm{c}}\right)^{2}
\end{array} \\
& \Rightarrow \cos (A)=\frac{\left.40000 \frac{\mu_{c} N_{i}^{2}-2 \cdot\left(173,389 \mu_{c} c^{2}\right.}{c}\right)^{2}}{\left(173,389 \frac{\mu_{2}}{\tau}\right)^{2}} \\
& \Rightarrow \theta=109,56^{\circ}
\end{aligned}
$$

bigha hadron physics Exarcise z Julien Bergmary
No
a) It plays a vole for fime-like formfactors (e.g. Dalita decrey)

Also important to pexplain enhess-seition Aoso $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$(Peaklain cross-section frap invaiant mass agsinst woss-section it Ea $7>0 \mathrm{MeV}$) U
this is no explantataine!
b) VDM does Wall for light mesons $\left(\pi, n, n^{\prime}\right), 22$

Bap not into quak- y Also it does wall >0
for y into quek-antigualk-paiss.
c)

$$
x_{e^{-t}}^{e^{+}} \stackrel{9}{=} \psi_{\pi^{-}}^{\pi^{+}}
$$

(intermediate vectar mesans)
adrixional to b)
 can be involved.
higher hadron physics
Julian Bo.gnera. Ns e 3

Neutrinos de much less (no) f weak or - 2 electromagnetic interaction than electrons. Also the average way of flight without collisions is (also due to the first point) mach longer.
Regarding dep inelastic scattering, electrons can inter at with every quark with electromagnetic interaction while neutrinos are using weak interaction (W) transfer) so they are only responsive to $d, \bar{u}, s_{1}, \bar{c}$-quarks, (or counterparts regarding anti-nentrinos).
Because of transversal momentumitranster and parityuidation of neutrinos weak interaction the is on additional partial form factor component, adding up to 3 in total for neutrina-Dip incontmot to electron- 18 .

Higher hadranphysics Homework 2 Julien Bergman
104
1)
b) Same reaction \Leftrightarrow same ($\mu+$ energy $=0$ (fixed tang.)

$$
\begin{aligned}
& \Rightarrow E_{d l}=\frac{80000 G U^{2}+(517 \mathrm{KeV})^{2}+(938 M}{2 \cdot(938 M e l} \\
& \Delta x \approx \frac{\hbar}{Q} \quad, Q^{2}=2 E_{c 1} E_{p}(1-\cos (v)) / \mathrm{c}^{2}
\end{aligned}
$$

In case of highest Q^{2}, elastic scattering with $v=180^{\circ}$ with full energy-tramster $\sqrt{1}$ the equation $Q^{2}=\frac{s}{c^{2}}$ is valid.
(tor the beans)
d) It the electron is scattered back at $x=180^{\circ}$ elastically and got the full mergy of the proton, Q^{2} can be calculated with $Q_{\text {mas }}^{2}=\frac{s}{c^{2}}$.
In this case that means: $a_{2,1}^{2}=80000 \frac{6 \mathrm{cl}^{2}}{\mathrm{c}^{2}}$
e) The corentrintenriont bjorlen x is an indicator in deep inelastic scattering. how inclastio the total process af catering is. For an elastic process x is exactly 1 while otherwise it is between 0 and 1 . ($0<x \leq 1$) It also indicates that hadrons behave liber a collection of point like particles at highenergy scattering. no
f) Bjorken ealing refers to the mole where strain interacting particles are behaving like collections of point like particles in high energy scattering. the same bjorkentex ale action that form form fetors The observation of this leads to the point bike substruct. 'of the proton (orgy)

$$
\begin{aligned}
& s=\left(\eta_{e l}+q_{p}\right)^{2} c^{2}=\left(E_{e l}+E_{p}\right)^{2}-f\left(-\left(E_{e l}-m_{e l}\right)+\left(\widetilde{E_{p}-m_{p}}\right)\right)^{2} \\
& =E_{c l}^{2}+E_{p}^{2}+2 E_{c l} E_{p} \\
& =E_{r}^{2}+2 E_{c} E_{r}+2 E_{e l} m_{l l}-m_{c l}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =80000 \mathrm{GeV}^{2}
\end{aligned}
$$

skating violations?

$$
\frac{1,25}{2}
$$

Exercises 3/ Homework 3

See the PDG for properties of crystals, gases and formulas.

1. Gamma detection is done by means of electromagnetic calorimeters. They are build out of different type of scintillating crystals. Two materials which are used are barium-fluoride $B a F_{2}$ and lead-tungstate $\mathrm{PbWO} O_{4}$. In the following, a crystal length of $30 \mathrm{~cm} \mathrm{BaF} F_{2}$ and $20 \mathrm{~cm} \mathrm{PbWO}_{4}$ is assumed.
(a) From the radiation length of the crystals, calculate the fraction of energy a 500 MeV and 1 GeV gamma deposit in the crystal.
(b) How large is the propability of the same photons to pass the crystal without starting an electromagnetic shower?
(c) How many electron/positrons (order) are created in every shower?
(d) What optimal lateral size of the crystals would you suggest for an experiment where position resolution is needed? Give a good reason for your answere.
2. Most detector types depend on energy loss described by the Bethe-Bloch formula.
(a) Estimate the total energy loss for charged particles (protons, pions, muons) with $\beta \gamma=3$ and the same particles with a momentum of $3 \mathrm{GeV} / \mathrm{c}$ in the STAR drift chamber, assuming the particles traverse the chamber 90° to the beam direction. Assume further that the bending in the field can be neglected.
(b) For the three particles above, calculate the bending radius in the magnetic field (with $\beta \gamma=3$ and with fixed momentum).
(c) What can you conclude from the above result in terms of particle identification?

Gas:10\%/90\% of $\mathrm{CH}_{4} / \mathrm{Ar}$ at normal atmosphere; size: outer/inner diameter $4 \mathrm{~m} / 1 \mathrm{~m}$; magnetic field: 0.5 T
higher hadron physics Ex/403 Julian Bergeroern
Ma 1
a) $x_{5}=\frac{x_{0}}{b}$ with x_{s} as shower length (may, max?)

$$
x_{0, \mathrm{BQ}_{2} F_{2}}=2,03 \mathrm{~cm}, \quad x_{0, \mathrm{PbWO}_{4}}=0,87 \mathrm{~cm}
$$

needed b for transmission of the crystal lengths

$$
\begin{aligned}
& L \leqslant_{x_{s}} \& \quad l_{B_{a} F_{2}}=30 \mathrm{~cm} \quad L_{\text {PbWO }}=20 \mathrm{~cm} \\
& b \geqslant \frac{x_{0}}{l}: \quad b_{\text {min }, B_{n} F_{L}}=\frac{2,03 \mathrm{~cm}}{30 \mathrm{~cm}}=0,068 \\
& b_{\text {min, } P_{b W O}}=\frac{0,87 \mathrm{~m}}{2 \theta \mathrm{~cm}}=0,045
\end{aligned}
$$

As you can sec in PDG p. 267 fir $27,19 b$ is relatively energy indejendant and for most materials a rand 0,5 but neva modes or near 0,07. This leads to the deduction that there wont be any transmission neither at 500 MeV nor at 1 GeV .
b) In empiric statistics the probability that a particle went through the crystal without collisions is measured by deviling the cont of uncollided particles by the total amount of parties that Were sent through the crystal.
As photons are traveling with the same speed all the time, the amomit of particles is proportional to the intensity of a phatobeam.
So, with the formular of intensity loss is

$$
I(x)=10 \exp \left(-\frac{x}{x_{0}}\right)
$$

the probability of a single photon travelling uncollided through the crystal is equal to $\exp \left(-\frac{c}{x_{0}}\right)$.

$$
\begin{aligned}
\Rightarrow & P\left(x_{0, B_{\mathrm{B}} F_{2}}=2,03 \mathrm{~cm}, L_{B_{A} F_{1}}=30 \mathrm{~cm}\right)=3,8 \cdot 10^{-7} \\
& P\left(x_{0, P_{b W O_{4}}}=0,87 \mathrm{~cm}, L_{P G W D_{4}}=20 \mathrm{~cm}\right)=1,74 \cdot 10^{-10}
\end{aligned}
$$

c) As the particle shower is caused by the pair production process where the energy of the potion is used t. create electrons and positrons, their mass enengy mast be at least delivered $\left(1,122 M_{1} V\right)$. However this would only lead to not moving particles, which is clearly not the case in a shower.
So, using the energy loss formulas $\frac{d E}{d x}=-\frac{E}{X_{1}}$ for charged partides one could assume the kinetic energy of those particles around 1 MeV which wand still lead to a total amount of ca. 250 electrons and 250 positrons at 500 mcl beam energy $(a r 500$ at $26 . \mathrm{V})$). In a consecutive shower
however, when the produced charged particles mange again and form a new photon, there is much less energy available. So for every process where these is enough energy left after beryl bremsstrahlung and ionization absorbed energy, there is most likely only one electron-positeon pair produced per photon. 2
incident? No!
d) Fer position resolution it is important that as much of all electromagnetic showers as possible remain within the crystal. Thertore it is needed to know the lateral shower size. The transverse spread of an electromagnetic cascade is characterized by the Moliere radius which is given with geod approximation by

$$
R_{\mu}=\frac{21}{E_{c}\left(\mu_{v}\right)} x_{0}
$$

An average only 5% of shower energy transposes the crystal laterally with a crystal-cylinder of radius $2 R_{M}$. x_{0} is the radiationlength here, which $\frac{1}{15}$. given for a specific medium ($B_{9} F_{2}: 2,03 \mathrm{~cm}, \mathrm{PbWO}_{4}: 0,89 \mathrm{~cm}$).
E_{c} is the critical energy where the rates of energy loss due to bremsstrahlung and ionization are equal and is given by

$$
E_{c}=\frac{550}{z} M_{c} \mathrm{~V}
$$

for $z>12$ by good approximation.
Concluding this I would suggest a cylinder of

$$
\begin{aligned}
& 2 R_{M, B_{n} F_{2}}=2 \cdot 3,12 \mathrm{~cm}=6,24 \mathrm{~cm} \\
& 2 R_{M, P b O_{4}}=2 \cdot 1,96 \mathrm{~cm}=3,92 \mathrm{~cm}
\end{aligned}
$$

radius to use to have 95% of all em cascades remaining within the crystal.
$c+d$ Nock
higher hadron physics Ho/Ex 3 Julian Bergromen
ce 2
a)

Approximating the gas as fully consistent of argon (as Its already 90%), we can get the stopping power from Fig. 302 on p 246 in $p d g$ booklet 2012 . a little aboure the curve of
 and $-\frac{d E}{d x} \approx 1,5 \frac{\operatorname{mov} f_{0} r}{\mathrm{cmsin}^{2}}$ all three p articles. V With this form of $-\frac{d E}{d x}$,you also have to multiply with argon's density of $1,662 \cdot 10^{-3} \frac{8}{\mathrm{~cm}^{3}}$, so the formalar af total energy loss becomes

$$
\begin{aligned}
& \text { total energy loss becomes } \\
& \Delta E=-\frac{d E}{d x} s \Delta x \quad 1,5 \mathrm{~m} f
\end{aligned}
$$

with $\Delta x=4 m-1 m=3 \mathrm{~m}$, as the angle towards the beam is 90°.
Therefor ΔE for $\beta y=3$ is 375 koV .
For $p=3 \frac{G e V}{c}, \frac{d E}{d x}$ has different values depending on the particle:

$$
1,5 \cdot 1,662 \cdot 10^{-8} \cdot 300 \approx 750 \mathrm{eV}
$$

b)

$$
\begin{array}{ccc}
\frac{m v^{2}}{r}=q v B \quad & \Leftrightarrow r=\frac{p}{9 B} \\
\beta y=\frac{p}{m c} \Rightarrow p=\beta \gamma m c \\
p a r t i c l e & m \\
\pi & 139,6 \frac{\mu \cdot v}{c^{2}} \\
p & 939,3 \frac{\mu \cdot l}{c^{2}} \\
\mu & 105,7 \frac{\mu \mathrm{c}}{c^{2}} \\
p=3 \frac{6 c V}{c} & \Rightarrow & r=20,01 \mathrm{~m}
\end{array}
$$

$$
\beta y=\frac{p}{m c} \Rightarrow p=\beta \gamma m c \quad \Rightarrow \text { mass dependant - for } \beta y=3
$$

$$
\begin{array}{cccc}
\text { particle } & \mathrm{m} & r \\
\pi & 139,6 \frac{\mu . v}{c^{2}} & 2,79 \mathrm{~m} & \mathrm{M} \\
\pi, 78 \mathrm{~m}
\end{array} \quad \text { How dod yo r }
$$

$$
\begin{array}{llll}
\pi & 139,6 \frac{\mu v V}{L^{2}} & 1,79 \mathrm{~m} & V \\
p & 938,3 \frac{\mu, V}{c^{2}} & 18,78 \mathrm{~m} \\
\mu & 105,7 \frac{\mu \mathrm{~L}}{\mathrm{~L}^{2}} & 2,11 \mathrm{~m}
\end{array} \quad \text { get the init? }
$$

$$
\begin{aligned}
& \left(c \frac{d E}{d x}\right\rangle=k<z^{2} \frac{z}{A} \frac{1}{\beta^{2}}\left(\frac{1}{2} \ln \left(\frac{2 m c^{2} \beta^{2} y^{2} T_{\max }}{1^{2}}-\beta^{2}-\frac{\delta(\beta y)}{2}\right)\right) \\
& T_{\text {max }}=\frac{2 m e c^{2} \beta^{2} \gamma^{2}}{1+2 m_{c} y / \mu+\left(\frac{m \theta}{\mu}\right)^{1}}=2 m, c^{2} \rho^{2} y^{2} \quad\left(\text { for } \frac{2 y m e}{M} \ll 1\right) \\
& 1=\left(9,76 z+58,8 z^{-0,19}\right) \mathrm{eV} \quad(\text { for } z \geq 13) \\
& \frac{\delta}{2}=\ln \left(\frac{\hbar w_{p}}{1}\right)+\ln (\rho z)-\frac{1}{2} \\
& \omega_{p}=\sqrt{\rho \cdot\left(z^{(} / A\right)} \cdot 28,876 \mathrm{cV}=\sqrt{4 \pi N_{c} r_{c}^{3}} \frac{\mathrm{mec}^{2}}{\alpha} \\
& p V=N R T
\end{aligned}
$$

c) As shown in a) we can easily differentiate between those particles through energy lass when warping the same momentum while in b) we can do this with same momentum white in b) we can do this beeping the bending radius constant. The bending direction in the magnetic By constant. The bending direction afferent for particle and anti particle. Egg. P is moved inter opposite directional s field att all. The same as π^{+}. π^{0} isn't bend in the magnetic field at as π^{+}also for $\mu \frac{\frac{7}{6}}{}$

si haw do

Exercises 4/ Homework 4

1. For high energy experiments, it is convinient to measure particles momenta in terms of rapidity, defined as $y=\frac{1}{2} \ln \frac{E+p_{L}}{E-p_{L}}$. In most cases, it is experimentally less challenging to use the pseudo-rapidity $\eta=-\ln \tan \frac{\vartheta}{2}$.
(a) Explain why it is "easier" to measure the the pseudo-rapidity compared to the rapidity in an high energy experiment.
(b) One feature of rapidities is, that they can be added up (as long as the reference axis is the same). Prove that a particle, which has rapidity a in the CM frame traveling at rapidity b in lab frame, travels with rapidity $c=a+b$ in the lab frame.
(c) Compare y and η for protons, (charged) kaons and (charged) pions of $2 \mathrm{GeV} / \mathrm{c}$ momentum for $\eta=1,2$ and 5 .
(d) Prove that $\eta=y$ for large momenta.

Homework:

1. Under the assumption of no mixing with other pseudoscalar state, for $|\eta\rangle$ and $\mid \eta^{\prime}>$ states the following is requiered:

$$
X_{\eta}^{2}+Y_{\eta}^{2}=X_{\eta^{\prime}}^{2}+Y_{\eta^{\prime}}^{2}=1
$$

From that, derive these two formulas:

$$
\begin{gathered}
X_{\eta}=Y_{\eta^{\prime}}=\sqrt{\frac{1}{3}} \cos \theta_{p}-\sqrt{\frac{2}{3}} \sin \theta_{p} \\
Y_{\eta}=-X_{\eta^{\prime}}=-\sqrt{\frac{2}{3}} \cos \theta_{p}-\sqrt{\frac{1}{3}} \sin \theta_{p}
\end{gathered}
$$

higher hadron physics Ex/He 4 Julien Bergurann
No 1
a) For measurement of vapidity y it is necessary to measure Energy an tangitudisal momentum of the particle while psendo-rapidity it is only required t_{0} git the angle on which the particle was

$$
\begin{aligned}
& \text { Teltclen } \\
& \begin{array}{l}
\text { Tellclen } \\
\text { inlay: } y=\frac{1}{2} \ln \left(\frac{E_{y}+p_{c} \beta_{z}+p_{L}}{E_{y}+p_{c} \beta y+p_{c} z}\right)
\end{array} \\
& =\frac{1}{2} \ln \left(\frac{E+p_{c} \beta+E \beta+p_{c}}{E+p_{c} \beta-E \beta-p_{c}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =y=\begin{array}{c}
c \\
\text { Teildns in lab }
\end{array} \\
& \text { what is a b? }
\end{aligned}
$$

c)

$$
\begin{aligned}
& E^{2}=P^{2}+m^{2} \Rightarrow E=\sqrt{p^{2}+m^{2}} \\
& \tan (v)=2 \arctan \left(e^{-n}\right) \\
& \Rightarrow P_{c}=\sqrt{P_{l}^{2}-P^{2}} \tan \left(2 a+c \tan \left(e^{-n}\right)\right.
\end{aligned}
$$

higher hadron physics Ex/Ho 4 Julian Bagman
登?
c)

$$
\begin{aligned}
& E^{2}=p^{2}+m^{2} \quad \Rightarrow E=\sqrt{p^{2}+m^{2}} \\
& v=2 \arctan \left(e^{-n}\right) \\
& \tan (v)=\frac{P_{t}}{P_{L}}=\frac{\sqrt{P^{2}-P_{L}^{2}}}{P_{L}} \quad \Rightarrow P_{L}=\tan ^{-1}(v) \sqrt{P^{2} \cdot P_{L}^{2}} \\
& \Rightarrow p_{c}^{2}=\tan ^{-2}(v) \sqrt{p_{c}^{2}-p_{L}^{2}}{ }^{2}=\frac{\rho^{2}-p_{L}^{2}}{\tan ^{2}(v)} \\
& \Rightarrow p_{c}^{2}\left(1+\frac{1}{\tan ^{2}(v)}\right)=\frac{p^{2}}{\tan ^{2}(v)} \quad \Leftrightarrow p_{c}^{2}=p^{2} \cdot\left(\tan ^{2}(v)\left(1+\frac{1}{\tan ^{2}(v)}\right)\right)^{-1} \\
& \Rightarrow p_{L}^{2}=p^{2}\left(\tan ^{2}(v)+1\right)^{-1} \Rightarrow p_{L}=\frac{p}{\sqrt{\tan ^{2}(v)+1}} \\
& E\left(\frac{G e V}{}\right) p\left(\frac{G e L}{C}\right) \text { y } \eta \quad P_{L}\left(\frac{G C L}{C}\right) \\
& \begin{array}{lllllll}
p & 2,23 & 2 & 0,835 & 1 \mathrm{~V} & 1,523 & \begin{array}{l}
\text { See the rest } \\
\text { of the table }
\end{array} \\
k & 2,06 & 2 & 1,704 & 2 \mathrm{~V} & 1,928 & \text { on the } \\
\text { back } \Rightarrow
\end{array} \\
& \pi \quad 2,0048 \quad 2 \quad 3,340 \quad 5 \sqrt{1,9998}
\end{aligned}
$$

higher hadron physilas Ex/ HO 4 Julian Bergman
Homework?

$$
\begin{aligned}
& |n\rangle=x_{n} \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle+Y_{n}|s \bar{s}\rangle \\
& \left.\left.\left|n^{\prime}\right\rangle=x_{n^{\prime}} \frac{1}{\sqrt{2}}|u \bar{n}+d \bar{d}\rangle+r_{n^{\prime},} \right\rvert\, \text { s }\right\rangle \\
& \left|n_{g}\right\rangle=\frac{1}{\sqrt{6}}|u \bar{u}+d d+25 \bar{s}\rangle \\
& \left|n_{0}\right\rangle=\frac{1}{\sqrt{3}}\left|u_{\bar{u}}+\bar{d} \bar{d}+5 \bar{s}\right\rangle \\
& |n\rangle=\cos \left(\theta_{p}\right) \ln p-\sin \left(\theta_{p}\right)\left|n_{0}\right\rangle \\
& \left|\eta^{\prime}\right\rangle=\sin \left(\theta_{p}\right)\left|n_{\phi}\right\rangle+\cos \left(\theta_{p}\right)\left|n_{0}\right\rangle \\
& \left.\left.\left.|\eta\rangle=x_{\eta} \frac{1}{\sqrt{2}}|u \bar{n}+d \bar{d}\rangle+Y_{\eta}|s \bar{s}\rangle=\cos \left(\theta_{p}\right) \right\rvert\, \eta_{p}\right)-\sin \left(\theta_{p}\right) / n_{0}\right\rangle \\
& =\cos \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{6}}|u \bar{u}+d \bar{d}-2 s \bar{s}\rangle-\sin \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{3}}|u \bar{u}+d \bar{d}+s \bar{s}\rangle \\
& =\underbrace{\left(\cos \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{6}}-\sin \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{3}}\right)}_{x_{n} \cdot \frac{1}{\sqrt{2}}}(\operatorname{un}+d \bar{\alpha})+\underbrace{\left(\frac{-2}{\sqrt{6}} \cos \left(\theta_{p}\right) \frac{1}{\sqrt{2}} \cdot \sin \left(\theta_{p}\right)\right.}_{Y_{n}} \frac{1 \sin)}{} \\
& \Rightarrow \quad Y_{n}=-\sqrt{\frac{2}{3}} \cos \left(\theta_{p}\right)-\frac{1}{\sqrt{3}} \sin \left(\theta_{p}\right) \\
& X_{n}=\sqrt{\frac{1}{3}} \cos \left(\theta_{r}\right)-\sqrt{\frac{2}{3}} \sin \left(\theta_{p}\right) \\
& \left|\eta^{\prime}\right\rangle=X_{n 1} \cdot \frac{1}{\sqrt{2}}|u \bar{n}+d \bar{d}\rangle+Y_{n^{\prime}}|\operatorname{sis}\rangle=\sin \left(\theta_{p}\right)\left|n_{8}\right\rangle+\cos \left(\theta_{p}\right)\left|n_{c}\right\rangle \\
& \left.\left.\left.=\sin \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{6}} \right\rvert\, u \bar{u}+\alpha \bar{d}-2 \operatorname{si}\right) \left.+\cos \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{3}} \right\rvert\, u \bar{u}+\alpha \bar{\alpha}+s \bar{s}\right) \\
& =\underbrace{\left.\left(\sin \left(\theta_{p}\right) \cdot \frac{1}{\sqrt{6}}+\cos \left(\theta_{p}\right) \frac{1}{\sqrt{3}}\right)|u \bar{u}+d \dot{d}\rangle\right)+\underbrace{\left(\frac{-2}{\sqrt{6}} \sin \left(\theta_{p}\right)+\frac{1}{\sqrt{3}}\right.}_{Y_{n^{\prime}}} \operatorname{\operatorname {cos}(\theta _{p}))/\overline {s})}}_{X_{n^{\prime}} \frac{1}{\sqrt{2}}} \\
& \Rightarrow X_{\eta^{\prime}}=\sqrt{\frac{2}{3}} \cos \left(\theta_{p}\right)+\sqrt{\frac{2}{3}} \sin \left(\theta_{p}\right)=-Y_{n} \\
& Y_{u^{\prime}}=-\sqrt{\frac{2}{3}} \sin \left(\theta_{p}\right)+\frac{1}{\sqrt{3}} \cos \left(\theta_{p}\right)=X_{n}
\end{aligned}
$$

Homework 5

1. Exotic quantum numbers: Prove that the quantum numbers $0^{+-}, 1^{-+}$ and 2^{+-}are not allowed for mesons (quark-antiquark). Hint: Start with the allowed cases for the spin and then, for a fixed spin, check the cases for J .
2. Which of the following decays meson are allowed in strong interaction? Check the known rules (parity, isospin, ...) and state which are violated in the decay.
(a) $\rho \rightarrow \pi^{+} \pi^{-}$and $\omega \rightarrow \pi^{+} \pi^{-}$
(b) $\rho \rightarrow \pi^{0} \pi^{0}$ and $\omega \rightarrow \pi^{0} \pi^{0}$
(c) $\rho \rightarrow \eta \pi^{0}$ and $\omega \rightarrow \eta \pi^{0}$
(d) $\rho^{+} \rightarrow \eta \pi^{+}$
(e) $J / \psi \rightarrow \pi^{0} \pi^{0}$ and $J / \psi \rightarrow \pi^{+} \pi^{-}$
nigher hadron physics
Ho. 5
Julian Bergman
$0^{+-}: \operatorname{spin}^{-} 0$ or 1 .
$\operatorname{spin} 0: J=0, S=0, J=L \oplus S \Rightarrow L=0, P=(-1)^{L+1}=-1 \quad$ y
Spin 1: J $=0, S=1, J=L \oplus S \Rightarrow L=0$ or 1
$L=0: P=(-1)^{L+1}=-1 \quad L$
$L=1: P=(-1)^{L+1}=1, C=(-1)^{L+S}=1 \quad 4$
$1^{-+}: \operatorname{Spin} 0: J=1, S=0, J=L \oplus S \Rightarrow L=1$

$$
L=1: \quad P=(-1)^{L+1}=+1, \quad C=(-1)^{L+5}=-1
$$

spin 1: $J=1, S=1, J=L \oplus S \Rightarrow L=0$ o. 1 or 2

$$
L=0: P=(-1)^{L+1}=-1, C=(-1)^{L+S}=-1 \quad L
$$

$$
L=1: p=(-1)^{L+1}=1 \quad q
$$

$$
L=2: P=(-1)^{l+1}=-1, C=(-1)^{l+G}=-1 \quad \eta
$$

$$
\begin{aligned}
& 2^{+-}: \operatorname{spin} 0: 7=2, S=0, D=L \otimes S \Rightarrow L=2 \\
& L=0: ~ P(-1)^{L+1}=-14 \\
& \text { Spin 1: } J=2, S=1, J=L \otimes S \Rightarrow L=1 \text { or } 2 \text { or } 3 \\
& L=1: p=(-1)^{l+1}=1, C=(-1)^{l+s}=1 \quad 4 \\
& L=2: \quad P=(-1)^{l+1}=-1 \quad L \\
& L=3: \quad p=(-1)^{L+1}=1, C=(-1)^{L+S}=1 \sharp
\end{aligned}
$$

No 2
a)
$\rho \rightarrow \pi^{+} \pi^{-}$: charge: $0=1-1$

$$
\begin{aligned}
& \text { charge: } 0=1-1 \\
& \text { parity: } \left.-1=(-1) \cdot 1 \cdot 1 \leftarrow(-1)^{l}\right) l=1
\end{aligned}
$$

150 spin: $1=1 \oplus 1$
$l_{z}: 0=1-1$
G-Parity: $1=(-1)(-1)$
\Rightarrow permitted

$$
w \rightarrow \pi^{+} \pi^{-}: \quad \begin{aligned}
& \text { Isospin: } 1=1 \oplus 1 \\
& \text { G-parity: }-1 \neq(-1)
\end{aligned}
$$

G-parity: $-1 \neq(-1)(-1)$
\Rightarrow not allow-d
(rest similar to ρ)
b) $\rho \rightarrow \pi^{0} \pi^{0}$: charge: $0=0+0$

$$
\begin{aligned}
& \text { charge: } 0=0+0 \\
& \text { parity: }-1=(-1)(-1)(-1)^{1} \\
& \text { ang.mom.: } 1 \oplus 1=0+0+1 \\
& \text { c-parity: }-1 \neq 1 \cdot 1 \\
& \text { Cp-viol. : }=(-1)(-1) \\
& \text { Isospin }: 1=1 \oplus 1 \\
& \text { Iz : } 0=0+0 \\
& \text { G-parity:1 }=(-1)(-1) \\
& \text { Isospin: } 0=1 \oplus 1 \\
& \text { G-parity: }-1 \neq(-1)(-1) \\
& \text { C-parity: }-1 \neq 1 \cdot 1 \quad \text { not allowed }
\end{aligned} \quad \Rightarrow \text { not allowed }
$$

$$
w \rightarrow \pi^{0} \pi^{0}: \quad \text { (sospin : } 0=1 \oplus 1
$$

c)

0,5
\Rightarrow not allowed

$$
\begin{aligned}
\rho^{+} \rightarrow \eta \pi^{+}: & \text {charge: } 1=0+1 \\
& \text { parity: }-1=(-1)(-1)(-1)^{1} \\
& \text { ang. mam: : } 1 \oplus 1=0+0+1 \\
& \text { Isospin: } 1 \neq 0 \otimes 1 \\
& 1 z \text { : } 1=0+1 \\
& G \in \text { parity: } 1 \neq 1 \cdot(-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { charge: } 0=0+0 \\
& s \rightarrow \eta \pi^{0} \\
& \left.\begin{array}{l}
\text { parity: }-1=1 \cdot(-1) \cdot 1 \\
\text { ang.mam: } 1 \oplus 1=0+0+0
\end{array}\right\} f \\
& c-\text { parity:- } \overline{=1.1} \quad \Rightarrow \text { not allowed } \\
& \text { (P-viol: : } 1 \neq 1 \cdot(-1) \\
& \text { Isospin: } 1=1 \oplus 0 \\
& \text { Iz: } 0=0+0 \\
& \text { G-Parity: } 1 \neq(-1) \cdot 1 \\
& \omega \rightarrow \eta \pi^{0}: \quad 1 \text { sospin: } 0 \neq 1 \oplus 0 \quad \Rightarrow \text { not allowed } \\
& \text { G-parity: }(-1)=(-1) \cdot 1 \\
& \text { C-Prity: }-1 \neq 1.1 \\
& \text { Cp-vid: } 1 \neq 1 \cdot(-1) \\
& \Rightarrow \text { not allowed }
\end{aligned}
$$

c)

$$
\begin{aligned}
& J / \psi \rightarrow \pi^{0} \pi^{0} \text { : charge: } 0=0+0 \\
& \text { parity: }-1=1 \cdot 1 \cdot(-1)^{1} \\
& \text { amg.mom: : } 1 \oplus 1=0+0+1 \neq \\
& c \text {-parity: }-1 \neq(-1)(-1) \quad \Rightarrow \text { not allowed } \\
& \text { CP-viol: } \quad 1=(-1)(-1) \\
& \text { Isospin: } 0=1 \oplus 1 \\
& \text { In: } 0=0+0 \\
& G \text {-Parity: }-1 \neq(-1)(-1) \\
& J / \Psi \rightarrow \pi^{+} \pi^{-} \text {: charge: } 0=1-1 \\
& \text { parity: }-1=(-1) \cdot 1 \cdot 1 \\
& \text { avg. mom: } 1 \oplus 1=0+0+0 \text { sf } \\
& \text { G-parity: }-1 \neq(-1)(-1) \quad \Rightarrow \text { not allowed } \\
& \text { Isospin: } 0=101 \\
& l_{z}: 0=1-1
\end{aligned}
$$

- 1 far P aril

Sting wan several

