Theorie Tutorium vom 27.4.2010

Eigenschaften der Relativitätstheorie

1. Grenzgeschwindigkeit $(v \leq c)$

2. Gleichzeitigkeit systemabh. Begriff

3. Längenkontraktion

4. Zeitdiletation

Eigenzeit: $d\tau = \frac{1}{c}ds, ds^2 = (cdt)^2 - d\vec{x}^2 = (cdt')^2 - dx'^2$

Geschwindigkeitsaddition

in
$$K: \omega$$
, in $K': \omega'$

$$\omega = \frac{\omega' + v}{1 + \frac{v\omega'}{c^2}}$$

für $\omega' = c$ ist ω maximal c. für $\frac{v}{c} \to 0$ ist $\omega' = \omega + v$

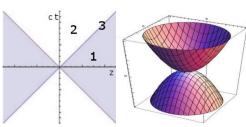
Artigkeit

$$d^2 = x^2 = x_\mu x^\mu = c^2 t^2 - \vec{x}^2$$

1 $d^2 > 0$: zeitartig 2 $d^2 < 0$: raumartig

 $3 d^2 = 0$: lichtartig

Beispiel:



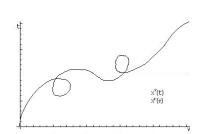
Eine Person niest (sendet Signal) zum Zeitpunt t_0 und der Koordinate x_0 . Eine zweite Person lässt ein Stück Kreide fallen zum Zeitpunkt t_1 und der Koordinate x_1 . benötigt das Licht für die Strecke Δx länger als Δt , so fällt das Stück Kreide bevor die Person 2 weiß, dass Person 1 genießt hat. Dann heißt das Ereignis raumartig. Trifft das Signal zeitgleich mit dem Fallen der Kreide ein, ist das Ereignis lichtartig. Benötigt das Licht weniger Zeit als Δt um Δx zurückzulegen, ist das Ereignis zeitartig.

Daher ist es nur in licht- und zeitartigen Ereignissen möglich, dass sie einander beeinflussen, also kausal zusammenhängen können.

(Dieses Beispiel sollte nicht als alleinige Lernquelle benutzt werden, da unwissentschaftlich!)

Bewegungselemente

 $\begin{array}{ll} \text{Vierergeschwindigkeit:} & u^{\nu} = \frac{dx^{\nu}(\tau)}{d\tau} = \frac{dx^{\nu}(t)}{dt} \frac{dt}{d\tau} \\ & u = \gamma(c, \vec{v}) \\ \text{Viererimpuls:} & p^{\nu} = m_0 u^{\nu}, \ p = \gamma m_0(c, \vec{v}) = m(c, \vec{v}) \end{array}$



Theorie Tutorium vom 3.5.2010

Kurzwiederholung

Vierergeschwindigkeit: $u^{\nu} = \frac{dx^{\nu}}{d\tau}, \quad u^{\nu} = \gamma(c, \vec{v})$ Viererbeschleunigung: $p^{\nu} = m_0 u^{\nu} = \gamma m_0(c, \vec{v}) = m(c, \vec{v})$

nicht relativistische Kraftgleichung

$$\begin{split} &\frac{d\vec{p}}{d\tau} = F^{\mu} \\ &\text{Erst 3 Komponenten: } F^i = \gamma \frac{d}{dt} (\gamma m_0 v^i) = \gamma K^i \\ &\vec{K} = \frac{d}{dt} (\frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} \vec{v}(t)) \\ &\text{Für } m_0 > 0 \text{ und } v \to c \text{ folgt also } m \to \infty \\ &\vec{K} = \frac{d}{dt} (m \vec{v}) = m \frac{d\vec{v}}{dt} + \vec{v} \frac{dm}{dt} \Rightarrow \text{Kaft nicht unbedingt parallel zur Beschleunigung!} \\ &F^0 \sim \text{zur Leistung der mechanischen Kraft.} \\ &F^0 = \frac{d}{d\tau} (\gamma m_0 c) = \gamma \vec{K} \frac{\vec{v}}{c} \Rightarrow \vec{K} = m \frac{d\vec{v}}{dt} + \frac{1}{c} (\vec{k} \vec{v}) \vec{v} \end{split}$$

Äquivalenz von Masse & Energie

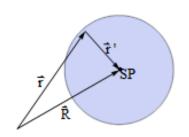
$$\frac{m_0c^2}{\sqrt{1-\beta^2}}=mc^2\equiv E$$
 (Energie eines freien Teilchens)
 Teilchen mit v=0 besitzt Ruheenergie m_0c^2 kin. Energie: $T=E-m_0c^2=(m-m_0)c^2\Rightarrow p=(\frac{E}{c},\vec{v}),~p^2=\frac{E^2}{c^2}-\vec{p}^2,~p^2=m_0c^2$

Systeme von Teilchen

$$\begin{split} &K=1,...,N\\ &\vec{F}_k=n_k\ddot{\vec{r}}_k=\vec{F}_k^e+\vec{F}_k^i\\ &\vec{F}=\sum_k\vec{F}_k=\frac{d}{dt}\sum_k\vec{p}_k=\frac{d}{dt}\vec{P}\\ &\Rightarrow\frac{d\vec{p}}{dt}=\vec{F}^e\Rightarrow\vec{P}\text{ konstant, wenn }\vec{F}=0\text{ (Impulserhaltung)}\\ &\frac{D\vec{L}}{dt}=\vec{M}\text{ (Drehimpulserhaltung)}\text{ }(\vec{r}_k\times\vec{F}_{kl}=0,\text{ wenn }\vec{F}_{kl}\text{ Zentralkraft)}\\ &W=\sum_k\frac{m_k}{2}v_k^2\text{ (Energieerhaltung)}\\ &\vec{R}=\frac{\sum_km_k\vec{r}_k}{\sum_km_k},\,\vec{V}=\dot{\vec{R}}=\frac{\sum_km_k\dot{\vec{r}}_k}{M}\text{ (Schwerpunkt)}\\ &T=\frac{M}{2}\dot{\vec{R}}^2+\sum_k\frac{m_k}{2}\dot{\vec{r}}_k^2+\sum_km_k\dot{\vec{r}}_k'\dot{\vec{R}}\text{ (kin. Energie)}\\ &=0\text{ im SP-System} \end{split}$$

2 Körper-System

$$\begin{split} N &= 2; \ \vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}; \ \vec{r} = \vec{r}_2 - \vec{r}_1 \\ \vec{r}_1 &= \vec{R} - \frac{m_2}{m_1 + m_2} \vec{r}; \ \vec{r}_2 = \vec{R} + \frac{m_1}{m_1 + m_2} \vec{r} \\ \text{Nur innere Kraft: } V(\vec{r}_1, \vec{r}_2) &= V(|\vec{r}_2 - \vec{r}_1|) = V(r) \\ F_1 &= -\vec{\nabla}_1 V(|\vec{r}_2 - \vec{r}_1|) = m_1 \vec{r}_1, \\ F_2 &= -\vec{\nabla}_2 V(|\vec{r}_2 - \vec{r}_1|) = m_2 \vec{r}_2 \end{split}$$



Theorie Tutorium vom 18.5.2010

Zweikörperproblem

$$\begin{split} & m\ddot{\vec{r}}_1 + m\ddot{\vec{r}}_2 = M\ddot{\vec{R}} = 0 \\ & \ddot{\vec{r}}_2 - \ddot{\vec{r}}_1 = -(\frac{1}{m_1} + \frac{1}{m_2})\vec{\nabla}_r V(r) = -\frac{1}{\mu}\vec{\nabla}_r V(r) = \frac{1}{\mu}\vec{F}' \\ & \vec{p} = \mu \vec{r}, \ \vec{F} = \frac{d\vec{p}}{dt}, \ \vec{p} = \frac{m_1}{M}\vec{p}_2 - \frac{m_2}{M}\vec{p}_1 \\ & \vec{L} = m_1(\vec{r}_1 \times \vec{v}_1) + m_2(\vec{r}_2 \times \vec{v}_2) = M(\vec{R} \times \vec{V}) + \mu(\vec{r} \times \vec{v}) \end{split}$$

Kontinuierliche Systeme von Teilchen

$$\begin{split} & \rho(\vec{r}) = \frac{dm}{dV}, \, \sigma = \frac{dM}{dF}, \, \tau = \frac{dM}{dl} \\ & M = \int \rho(\vec{r}) dV, \, \vec{R} = \frac{1}{M} \int \rho(\vec{r}) \vec{r} dV \\ & \vec{P} = \int \rho(\vec{r}) \vec{v}(\vec{r}) dV, \, \vec{L} = \int \rho(\vec{r}) (\vec{r} \times \vec{v}) dV \\ & \vec{M} = \int \rho(\vec{r}) (\vec{r} \times \dot{\vec{v}}) dV \end{split}$$

Gravitation bei kontinuierlichen Systemen

$$\begin{split} \vec{F}_{1\to 2} &= G \frac{m_1 m_2}{r^2} \frac{\vec{r}}{r} \\ \vec{F} &= G \sum_k \frac{m m_k}{|\vec{r}_k - \vec{r}|^3} (\vec{r}_k - \vec{r}) = F(\vec{r}) \text{ (Teilchen mit Masse m bei } \vec{r}) \\ \vec{F} &= G m \int \frac{\rho(\vec{r}')(\vec{r}' - \vec{r})}{|\vec{r}' - \vec{r}|^3} dV' \equiv m g(\vec{r}) \\ V(\vec{r}) &= -G m \int \frac{\rho(\vec{r}')}{|\vec{r}' - \vec{r}|} dV' \\ \vec{F} &= -\vec{\nabla} V \Rightarrow \vec{g}(\vec{r}) = -\frac{1}{m} \vec{\nabla} V = -\vec{\nabla} \phi \end{split}$$

Bewegung starrer Körper

Koordinaten-Nullpunkt auf Drehachse \Rightarrow Drehimpuls in Ri. der Drehachse:

$$L_n = \sum_i m_i (\vec{r}_i \times \vec{v}_i) \vec{n} = \sum_i m_i (\vec{n} \times \vec{r}_i) \vec{v}_i$$
$$v_i = d_i \omega, \ \omega = \dot{\vec{\varphi}} \Rightarrow \vec{L} = \sum_i m_i d_i^2 \dot{\vec{\varphi}} = I \dot{\vec{\varphi}} = I \vec{\omega}$$

 $I = \sum m_i d_i^2$ Trägheitsmoment der Drheung um die feste z-Achse.

$$\begin{split} I &= \int\limits_{-}^{i} \rho(\vec{r})(x^2+y^2)dV \\ \frac{d\vec{L}}{dt} &= I \ddot{\vec{\varphi}} \\ \text{kinet. Energie der Rotation: } T &= \frac{1}{2}I\omega^2 \end{split}$$

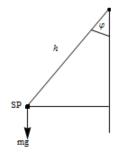
Theorem der prallelen Achsen

I bekannt für Drehung durch SP, Drehung durch parallele Achse $\vec{r} = \vec{R} + \vec{r}'$ \Rightarrow Steiner'sche Satz: $I' = I + MR^2$

(R: Distanz beider Achsen, I: Trägheitsmoment um Achse durch SP)

Physikalisches Pendel

Drehmoment auf starren Körper im Gravitationsfeld
$$\vec{M} = \vec{R} \times \vec{F}$$
, äußere Schwerkraft greift am SP an! $\vec{M} = I \ddot{\varphi} = \vec{r} \times \vec{F} = -Mgh \sin(\varphi) \vec{n}$ $\ddot{\varphi} = \ddot{\varphi} \vec{n}, \varphi < 0$ $\Rightarrow \ddot{\varphi} + \frac{Mgh}{I} \sin(\varphi) = 0$ kleine Ausschläge: $\phi \approx \varphi_0 \sin(\omega t + \alpha)$ $\Rightarrow \omega^2 = \frac{Mgh}{I}$ math. $\omega^2 = \frac{g}{l}$ $l_{eq} = \frac{I}{Mh}$



Theorie Tutorium vom 25.5.2010

Kinetische Energie der Rotation eines starren Körpers

$$T = \sum_{k} \frac{m_{k}}{2} \vec{v}_{k}^{2} = \frac{1}{2} \pi \vec{v}^{2} + \underbrace{\sum_{k} m_{k} \vec{r}_{k}' (\vec{v} \times \vec{\omega})}_{k} + \frac{1}{2} \sum_{k} m_{k} (\vec{\omega} \times \vec{r}_{k}')^{2}$$

*=0, Wenn NP von Σ in SP, oder wenn NP von Σ in Pkt. der bei Rotation raumfest. $\Rightarrow T = \frac{1}{2}Mv^2 + \frac{1}{2}\sum_k m_k (\vec{\omega}^2\vec{r}_k'^2 - (\vec{r}_k'\vec{\omega})^2)$

$$\Rightarrow T = \frac{1}{2}Mv^2 + \frac{1}{2}\sum_{k} m_k (\vec{\omega}^2 \vec{r}_k'^2 - (\vec{r}_k'\vec{\omega})^2)$$

$$= \frac{1}{2}Mv^{2} + \frac{1}{2}\sum_{ij}\omega_{i}\omega_{j}\sum_{k}m_{k}[\delta_{ij}\bar{r}_{k}'^{2} - x_{i}'^{k}x_{j}'^{k}]$$

Trägheitstensor $I_{ij} = \sum_k m_k [\delta_{ij} \vec{r}_k'^2 - x_i'^k x_j'^k]$ symm., rell.

$$\Rightarrow T = \frac{1}{2}Mv^2 + \frac{1}{2}\sum_{ij}I_{ij}\omega_i\omega_j$$

$$I = \begin{pmatrix} \sum m(y'^2 + z'^2) & -\sum mx'y' & -\sum mx'z' \\ -\sum mx'y' & \sum m(x'^2 + z'^2) & -\sum my'z' \\ -\sum mx'z' & -\sum my'z' & \sum m(x'^2 + y'^2) \end{pmatrix}$$

die betreffende feste Achse.

Nichtdiagonalelemente Deviationsmomente.

Drehimpils des starren Körpers

NP von \sum in SP \Rightarrow nur Bewegung relativ zum SP für \vec{L} wichtig!

$$\vec{L} = \sum_{k} m_{k} (\vec{r}_{k} \times \vec{v}_{k}) = \sum_{k} m_{k} [\vec{I}_{k} \times (\vec{\omega} \times \vec{r}_{k})], \ \vec{r}_{k} = \vec{r}_{k}'$$

$$\Rightarrow L = \sum_{l} m_{k} (\vec{r}_{k}^{2} - \vec{r}(\vec{r}\vec{\omega}))$$

$$L_{i} = \sum_{l} \omega_{l} (\sum_{k} m_{k} (r^{2} \delta_{il} - x_{i} x_{l})) = \sum_{l} I_{il} \omega_{l}$$

$$\Rightarrow \vec{L} = \underbrace{I\vec{\omega}}_{Matrix mult} \Rightarrow \vec{L} /\!\!/ \vec{\omega}$$
Bestimmung der Hauptträgheitsachsen und -momen

$$\Rightarrow L = \sum m(\vec{\omega}\vec{r}^2 - \vec{r}(\vec{r}\vec{\omega}))$$

$$L_i = \sum_{l} \omega_l \left(\sum_{k} m_k (r^2 \delta_{il} - x_i x_l) \right) = \sum_{l} I_{il} \omega_l$$

$$\Rightarrow \vec{L} = \vec{L}$$
 $\Rightarrow \vec{L}$ $\Rightarrow \vec{L}$

Bestimmung der Hauptträgheitsachsen und -momente.

Destinining der Traupttragnertsachsen und -momente.
$$\vec{L}||\vec{\omega}$$
?: Bed $\sum_{l} I_{il}\omega_{l} - I_{0}\omega_{i} = 0$, $\sum_{l} (I_{il} - I_{0}\delta_{il})\omega_{l} = 0$ (LGS, homogen in ω) nicht triviale Lösung, wenn $det(I_{il} - I_{0}\delta_{il}) = 0$

 $\Rightarrow I_0$ EW von Trägheitstensor (3 × 3 \Rightarrow 3EW $I_0^i \in \mathbb{R}, 3\text{EV }\vec{\omega}^i)$

Also:
$$I\vec{\omega}^i = I_0^i \vec{\omega}^i$$

$$1 \Rightarrow I\vec{\omega}^i = I_0^i\vec{\omega}^i, \ 2 \Rightarrow I\vec{\omega}^j = I_0^j\vec{\omega}^j$$

$$1 \Rightarrow I\vec{\omega}^i = I_0^i \vec{\omega}^i, \ 2 \Rightarrow I\vec{\omega}^j = I_0^j \vec{\omega}^j$$

$$1 - 2 \Rightarrow \underbrace{\vec{\omega}^j I \vec{\omega}^i I \vec{\omega}^j}_{0 = (I_0^i - I_0^j) \vec{\omega}^i \vec{\omega}^j}$$

 $\Rightarrow \vec{\omega}^i \perp \vec{\omega}^j \Rightarrow \text{EV bilden kart Achsensystem}$

 I_0^i : Hauptträgheitsmomente, $\vec{\omega}^i$: Hauptträgheitsachsen

Diagonalisierung einer Matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \Rightarrow \begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} = A'$$

 $det(A') \stackrel{!}{=} 0 \Rightarrow Berechnung von \alpha_{1,2,3}$

Zur Bestimmung der EV:

$$A'\vec{v}' = 0 \Rightarrow \begin{array}{l} (a_{11} - \lambda_i)v_x^i + a_{12}v_y^i + a_{13}v_z^i = 0 \\ a_{21}v_x^i + (a_{22} - \lambda_i)v_y^i + a_{23}v_z^i = 0 \\ a_{31}v_x^i + a_{32}v_y^i + (a_{33} - \lambda_i)v_z^i = 0 \end{array} \text{ für jeden EW durchrechnen} \Rightarrow \vec{v}^1, \vec{v}^2, \vec{v}^3$$

6. Juli 2010 4/7

Theorie Tutorium vom 15.6.2010

Kreisel

1) starrer Körper in einem Pkt festgehalten

2) Körperfestes und Raumgestes System im Nullpunkt zusammen

3) Raumfest: X,Y,Z

4) Körperfest: x,y.z

Bewegungsgleichungen des in einem Pkt. festen Körpers

alg. Bewegungsgl $\vec{M} = \frac{d\vec{L}}{dt}$

a) $\vec{M} \& \vec{L}$ im Labor-System berechnen $\frac{dLx}{dt} = \frac{d}{dt}(I\vec{\omega}) = Mx$

b) Bewegungsgl. im körperfesten System: $\vec{M} = \frac{\vec{L}}{dt} = \frac{d'\vec{L}}{dt} + (\vec{\omega} \times \vec{L})$ Rotation \Rightarrow kein Intertialsystem $\vec{L} = \sum_{i} L_{i}\vec{e_{i}}, \quad \vec{L} = \sum_{i} L_{i}\vec{e'_{i}} \Rightarrow \frac{d\vec{L}}{dt} = \sum_{i} \dot{L}_{i}\vec{e'_{i}} + \sum_{i} \dot{L_{i}}\dot{\vec{e'_{i}}}'$

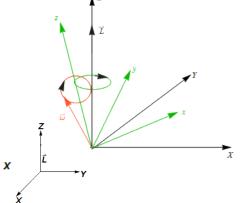
$$\Rightarrow M_i = \frac{dL'}{dt} + (\vec{\omega} \times \vec{L})_i$$

mit Hauptträgheitsachsen: $L_i = I_{ii}\omega_i \Rightarrow I_x \frac{d'}{dt}\omega_x + \omega_y \omega_z (I_z - I_y) = Mx$

Euler'sche Bezeichnungen:

$$(p,q,r) = \vec{\omega} = (\omega_x, \omega_y, \omega_z); A, B, C \leftrightarrow I_x, I_y, I_z$$

$$\Rightarrow \begin{vmatrix} A\dot{p} + (C-B)qr = M_x \\ B\dot{q} + (A-C)rp = M_y \\ C\dot{r} + (B-A)pq = M_z \end{vmatrix}$$
(Euler'sche Gleichungen)



Kräftefreie Bewgung des sym. Kreisels

Sym-Achse: körperfeste z-Ache \Rightarrow A=B

Da Bewegung krätefrei $\Rightarrow L$ im Laborsystem onstant

Raumfeste Z-Achse in Drehimpuls \hat{L}

$$A\dot{p}(C-A)qr = 0, \quad A\dot{q} + (A-C)rp = 0, C\dot{r} = 0$$

 \Rightarrow r=const, $L_z = Cr = const$ (spezielle Elgenschaft des symm Kreisels. keie allg. Impulser-

$$\Rightarrow A\dot{p} = \left| \begin{array}{c} (A-C)qr \\ B\dot{q} = (C-A)pr \end{array} \right| = \left| \begin{array}{c} A\dot{p} = (A-C)qr \\ A\dot{q} = (C-A)pr \end{array} \right| = \left| \begin{array}{c} \dot{p} = A-C/Arq \\ \dot{q} = -\frac{A-C}{A}rp \end{array} \right| \ mit \ \oplus \Rightarrow p\dot{p} + \frac{1}{2} \left| \begin{array}{c} \dot{p} = A - C/Arq \\ \dot{q} = -\frac{A-C}{A}rp \end{array} \right|$$

$$*A^2 \Rightarrow Lx^2 + Ly^2 = A^2(p^2 + q^2) = A^2\omega_{\perp}^2 = const \Rightarrow \vec{L}^2 = L_x^2 + L_y^2 + L_z^2 = const$$

 $\begin{array}{l} qq-b-dt\,\bar{2}\,(p^2+q^2)\\ \Rightarrow p^2+q^2=\omega_\perp^2=cons, p^2+q^2+r^2=\omega^2=const\ (\text{im k\"orperfesten System})\\ \vec{\omega} \text{ pr\"azessiert auf Kegel um z-Achse mit } \tan(\beta)=\frac{\omega_\perp}{\omega}\\ *A^2\Rightarrow Lx^2+Ly^2=A^2(p^2+q^2)=A^2\omega_\perp^2=const\Rightarrow \vec{L}^2=L_x^2+L_y^2+L_z^2=const\\ L^2 \text{ auch im raumfesten System konstant! } *A\Rightarrow Energieerhaltung: A(p^2+q^2)+Cr^2=const \end{cases}$

 $T = \frac{1}{2}\vec{L}\vec{\omega} \Rightarrow \vec{L}\vec{\omega} = const$ Projektion von $\vec{\omega}$ auf \vec{L} konstant

 \Rightarrow Körperfestes System: $|\vec{\omega}| \& |\vec{L}|$ konstant \Rightarrow Winkel zwischen $\vec{w} \& \vec{L}$ konstant

Beobachter im Körperfesten System sieht auch Präsession des Winkelgeschwindigkeitsvektors um den Drehimpulsvektor auf einem Kreis mit dem konstanten Radius $A\omega_{\perp}$. Gleichzeitig präzessiert $\vec{\omega}$ um körperfeste Symmetrieachse.

Bewegl für $\vec{\omega}$: $\omega z = r$ const, $p(t) = \omega_{\perp} \sin(\Omega t)$, $\Omega = \frac{A-C}{A}r$, $q(t) = \omega_{\perp} \cos(\Omega t)$

6. Juli 2010 5/7

Bewegung des Kreisels im raumfesten System

Euler'sche Winkel:

Lage der Figurenachse im Raum und 3 Freiheitsgrade.

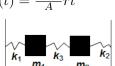
Euler'sche Winkel geben die Lage des körperfesten

Systems relativ zum raumfesten.

Transformation durch 3 Rotationen:

- 1) Drehung um Z-Achse um ψ
- 2) Drehung um neue x-Achse um ϑ
- 3) Drehung um neue z-Achse um φ

$$\vartheta(t) = \arctan(\frac{A\omega_{\perp}}{Cr}) = const, \quad \psi(t) = \psi_0 + \frac{1}{A}\sqrt{(Cr)^2 + (A\omega_{\perp})^2}t, \quad \varphi(t) = \frac{A-C}{A}rt$$



Beispiel: 2 gekoppelte harm. Oszillatoren in 1 Dim.

Ruhelagen $(a_{10}|a_{20})$, System ohne Spannungen

$$\Rightarrow L = \frac{m_1}{2}\dot{a}_1^2 + \frac{m_2}{2}\dot{a}_2^2 - V(a_1, a_2)$$

$$V(a_1, a_2) = \frac{1}{2}k_1(a_1 - a_{10})^2 + \frac{1}{2}k_2(a_2 - a_{20})^2 + \frac{1}{2}k_3((a_1 - a_{10}) - (a_2 - a_{20}))^2$$

$$\Rightarrow \text{Auslenkung } x \Rightarrow m_1\ddot{x}_1 + k_1x_1 + k_3(x_1 - x_2) = 0, \quad m_2\ddot{x}_2 + k_2x_2 + k_3(x_1 - x_2) = 0$$

$$\Rightarrow$$
 Auslenkung $x \Rightarrow m_1\ddot{x_1} + k_1\ddot{x_1} + k_3(x_1 - x_2) = 0$, $m_2\ddot{x_2} + k_2\ddot{x_2} + k_3(x_1 - x_2) = 0$

Nun sei $m_1 = m_2$, $k_1 = k_2$ Ansatz: $x_i = A_i e^{i\omega t}$

Ansatz:
$$x_i = A_i e^{i\omega t}$$

$$\Rightarrow (\frac{k}{m} + \frac{k_3}{m} - \omega^2) A_1 + (-\frac{k_3}{m}) A_2 = 0, \quad -\frac{k_3}{m} A_1 + (\frac{k}{m} + \frac{k_3}{m} - \omega^2) A_2 = 0$$

Ansatz:
$$x_{i} = A_{i}e^{i\omega t}$$

$$\Rightarrow \left(\frac{k}{m} + \frac{k_{3}}{m} - \omega^{2}\right)A_{1} + \left(-\frac{k_{3}}{m}\right)A_{2} = 0, \quad -\frac{k_{3}}{m}A_{1} + \left(\frac{k}{m} + \frac{k_{3}}{m} - \omega^{2}\right)A_{2} = 0$$

$$\left(\frac{k}{m} + \frac{k_{3}}{m} - \omega^{2} - \frac{k_{3}}{m}\right)\left(A_{1}\right) = \begin{pmatrix} 0\\0 \end{pmatrix}$$

$$\Rightarrow \det \left(\frac{k}{m} + \frac{k_{3}}{m} - \omega^{2} - \frac{k_{3}}{m}\right) = 0$$

$$\Rightarrow \left(\frac{k}{m} + \frac{k_{3}}{m} - \omega^{2}\right)^{2} = \left(\frac{k_{3}}{m}\right)^{2} \Rightarrow \frac{k}{m} + \frac{k_{3}}{m} - \omega^{2}_{1,2} = \pm \frac{k_{3}}{m} \Rightarrow \omega_{1,2} = \frac{k}{m} + \frac{k_{3}}{m} \mp \frac{k_{3}}{m}$$

$$\Rightarrow \omega_{1,2} = \frac{k}{m} + \frac{k_{3}}{m} + \frac{k_{3}}{m} = \omega_{1,2} = \pm \frac{k_{3}}{m} \Rightarrow \omega_{1,2} = \frac{k}{m} + \frac{k_{3}}{m} + \frac{k_{3}}{m} = \omega_{1,2} = \pm \frac{k_{3}}{m} + \frac{k_{3}}{m} = \omega_{1,2} = \pm \frac{k_{3}}{m} = \omega_{1,2} = \omega_{$$

$$\Rightarrow \det \left(\begin{array}{cc} \frac{k}{m} + \frac{k_3}{m} - \omega^2 & -\frac{k_3}{m} \\ -\frac{k_3}{m} & \frac{k}{m} + \frac{k_3}{m} - \omega^2 \end{array} \right) = 0$$

$$\Rightarrow (\frac{k}{m} + \frac{k_3}{m} - \omega^2)^2 = (\frac{k_3}{m})^2 \Rightarrow \frac{k}{m} + \frac{k_3}{m} - \omega_{1,2}^2 = \pm \frac{k_3}{m} \Rightarrow \omega_{1,2} = \frac{k}{m} + \frac{k_3}{m} \mp \frac{k_3}{m}$$

$$\Rightarrow w_1 = \sqrt{\frac{k}{m}}, \quad w_2 = \sqrt{\frac{k + 2k_3}{m}}$$

$$\omega_1 = \sqrt{\frac{k}{m}} \Rightarrow (\frac{k}{m} + \frac{k_3}{m} - \frac{k}{m})A_1 - \frac{k_3}{m}A_2 = 0$$

Also
$$A_1 = A_2 \Rightarrow 1$$
. Lösung: $x_1 = A_1 e^{i\omega_1 t}$, $x_2 = A_1 e^{i\omega_1 t}$

$$w_2 = \sqrt{\frac{k+2k_3}{m}} \Rightarrow (\frac{k}{m} + \frac{k_3}{m} - \frac{k}{m} - \frac{2k_3}{m})A_1 - \frac{k_3}{m}A_2 = 0$$

Also
$$A_1 = -A_2 \Rightarrow 2$$
. Lösung: $x_1 = -A_2 e^{i\omega_2 t}$, $x_2 = A_2 e^{i\omega_2 t}$

Also
$$A_1 = A_2 \Rightarrow 1$$
. Losung: $x_1 = A_1 e^{i\omega t}$, $x_2 = A_1 e^{i\omega t}$
 $w_2 = \sqrt{\frac{k+2k_3}{m}} \Rightarrow (\frac{k}{m} + \frac{k_3}{m} - \frac{k}{m} - \frac{2k_3}{m})A_1 - \frac{k_3}{m}A_2 = 0$
Also $A_1 = -A_2 \Rightarrow 2$. Lösung: $x_1 = -A_2 e^{i\omega_2 t}$, $x_2 = A_2 e^{i\omega_2 t}$
allgemeinste Lösung: $x_1 = c_1 A_1 e^{i\omega_1 t} - c_2 A_2 e^{i\omega_2 t}$, $x_2 = \underbrace{c_1 A_1 e^{i\omega_1 t}}_{\vartheta_1} + \underbrace{c_2 A_2 e^{i\omega_2 t}}_{\vartheta_2}$

$$\Rightarrow x_1 = \vartheta_1 - \vartheta_2, \quad x_2 = \vartheta_1 + \vartheta_2$$

Bewegung in beschl Bezugssystemen

Lagrange-Funktion

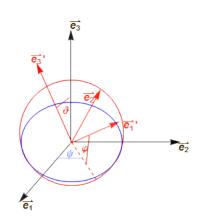
$$\delta \int_{t}^{t_2} L dt = 0 \Rightarrow$$
 Lagrange-Gl. behalten Gestalt.

a) Übergang zu neuem, translatv-bewegten System
$$K': \vec{v} = \vec{V}(t) + \vec{v}'$$

Eingesetzt in
$$L = \frac{mv^2}{2} - U \Rightarrow L = \frac{m\vec{v}'^2}{2} + m\vec{v}'\vec{V} + \frac{m\vec{V}^2}{2} - U$$

$$m\vec{V}\vec{v}' = \underbrace{\frac{d}{dt}(m\vec{V}\vec{r}')}_{-m\vec{r}'\frac{d\vec{V}}{dt}} \Rightarrow L' = \frac{m\vec{v}'^2}{2} - \frac{d\vec{V}}{dt}m\vec{r} - U$$

6. Juli 2010 6/7



$$L'$$
im System $K'\Rightarrow$ Lagrange-Gl.: $m\frac{d\vec{v}}{dt}=-\vec{\nabla}U-m\frac{d\vec{V}}{dt}$

b) rotierendes System K", das mit K' gemeins. Nullpkt.

$$\vec{r} = \vec{R} + \vec{r}', \quad \vec{R} = \vec{R}(t)$$

Ursprung des rot. Systems auf Ursprung des translativ bewegten Systems.

 $\Rightarrow \vec{r}'' = \vec{r}'; \quad \vec{v}''$: Geschwindigkeit in Bezug auf rot. System

Dann gilt
$$\vec{v}' = \vec{v}'' + (\vec{\omega} \times \vec{r}'')$$

$$\Rightarrow L'' = \frac{m\vec{v}''^2}{2} + m\vec{v}''(\vec{\omega} \times \vec{r}'') + \frac{m}{2}(\vec{\omega} + \vec{r}'')^2 - m\frac{d\vec{V}}{dt}\vec{r}'' - U$$

Bewegungsgleichung

Laborsystem: Index 0

$$\frac{\partial L}{\partial \vec{v}} = m\vec{v} + m(\vec{\omega} \times \vec{r})$$

$$\vec{v}(\vec{\omega} \times \vec{r}) = \vec{r}(\vec{v} \times \vec{\omega})$$

$$(\vec{\omega} \times \vec{r})^2 = \vec{r}((\vec{\omega} \times \vec{r}) \times \vec{\omega})$$

$$\frac{\partial L}{\partial \vec{x}} = \vec{\nabla} L = m(\vec{v} \times \vec{\omega}) + m((\vec{\omega} \times \vec{r}) \times \vec{\omega}) - ma\vec{v} - \vec{\nabla} U$$

$$\begin{split} & \frac{\partial \vec{v}}{\partial \vec{v}} = mv + m(\omega \times \vec{r}) \\ & \vec{v}(\vec{\omega} \times \vec{r}) = \vec{r}(\vec{v} \times \vec{\omega}) \\ & (\vec{\omega} \times \vec{r})^2 = \vec{r}((\vec{\omega} \times \vec{r}) \times \vec{\omega}) \\ & \frac{\partial L}{\partial \vec{r}} = \vec{\nabla} L = m(\vec{v} \times \vec{\omega}) + m((\vec{\omega} \times \vec{r}) \times \vec{\omega}) - maa\vec{v} - \vec{\nabla} U \\ \Rightarrow & \text{Bewegungsgl.: } \frac{d}{dt} (\frac{\partial L}{\partial \vec{v}} = m\frac{d\vec{v}}{dt} + m(\vec{\omega} \times \vec{r}) + m(\vec{\omega} \times \vec{v}) \Rightarrow \frac{md\vec{v}}{dt} = -\vec{\nabla} U - m\dot{\vec{v}} + m(\vec{r} \times \dot{\vec{\omega}}) + 2m(\vec{v} \times \vec{\omega}) - m(\vec{\omega} \times (\vec{\omega} \times \vec{r})) \\ & \text{Zusätzl. zu } \vec{F} = -\vec{\nabla} U \text{: Trägheitskräft:} \end{split}$$

- a) $m(\vec{r} \times \dot{\vec{\omega}})$: unglm Rotation
- b) $2m(\vec{v} \times \vec{\omega})$: Corioleskraft \perp zu Geschw. und Drehachse
- c) $-m(\vec{\omega} \times (\vec{\omega} \times \vec{r})) = m\omega^2 p$: Zentrifugalkraft \perp zur Drehachse von ihr weg, p: Abstand von Drehachse

Theorie Tutorium vom 6.7.2010

Hinweise Altklausur K2

Erhaltungssätze in L: $m, V(\vec{r})$, L unabh. $q_k \Rightarrow \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_k}) = \frac{d}{dt}p_k = 0$. Also $\dot{y} = const$.

Hinweise Altklausur K3

Taylor, da kleine Schwingungen um die Ruhelage.

$$\frac{dV}{dx} = 0 \Rightarrow x_{min} = 0$$

1. Ordnung Taylor:
$$V(X)|_{x=0} + \frac{1}{1!} \frac{\partial V(X)}{\partial x}|_{x=0} x = 0$$

Hinweise Altklausur K4

$$\frac{dL}{dt} = \sum_{i} \frac{\partial L}{\partial q_{i}} \dot{q}_{i} + \sum_{i} \frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i} = \sum_{i} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{i}} \right) \Rightarrow \frac{d}{dt} \left(\sum_{i} \dot{q}_{i} \frac{\partial L}{\partial q_{i}} - L \right) = \frac{d}{dt} \left(\sum_{i} p_{i} \dot{q}_{i} - L \right) = 0$$
 Erhaltungsgröße

6. Juli 2010 7/7