7 Besprechung in Tipps für Physiker II zum Blatt 7, zum 28.5.2010

- 1: Zeigen, dass stetig: Zähler 3. Ordnung, Nenner nur 2. Ordnung. oben abschätzen, unendlich-Norm: $(x,y)^3$; unten unendlich-Norm $(x,y)^2$ (beispielsweise). Dann zu sehen: kürzbar... $\to 0$ $(x \to x_0)$ Verschiedene Richtung $(\cos \varphi, \sin \varphi)$. Wann ex. Richtungsableitung? $\lim_{t\to 0} \frac{f(t*u)-f(0)}{t}$. Gilt für alle φ . Hier: einige mit Ri.abl.=0 und andere $\neq 0$, nicht insgesamt null \Rightarrow nicht linear. \Rightarrow nicht total diffbar.
- 2: div leicht < 0, Rotationsrichtung egal. (Vorl: gleich 0!). Wie passt das? 3 Dimensionale Strömung betrachten! 3. Komp macht in div positiven Anteil!→Welt in Ordnung.
- 3: Subskripte: partielle Ableitungen! Hinweis beachten! $\Rightarrow \phi(x+ct), \phi(x-ct) =: u(t,x)$
- 4: Ausrechnen, Taylor etc. Leicht. $\alpha(2,1), \ \delta^{\alpha}f(1,1) = (\partial_1^2\partial_2 f)(1,1), \ \alpha! = 2, \ (x-1,y-1)^{\alpha} = (x-1)^2(y-1)$
- 5: Wenn u offen im gr. Raum, dann ist a rel. offen in u, wenn offen in gr. Raum. Abg. äquiv.
- 6: Fourier-Ansatz: Entwicklung Subskripte=Differenzieren.
 b... Koeffizientenvergleich, nur dann können Funktionen gleich sein!

Wärme: $\dot{a}_k(t) - k^2 * a_k(t)$ (e-Funktion!) Wellen: $\ddot{a}_k(t) = -k^2 \cdot a_k(t)$ (Sin oder Cos!)

Mathematiker wenden sich zur Lösung von DGLs bitte an Physiker...

2. Juni 2010 1/1