Kap. 13: Atome in einem äußeren Magnetfeld

Elektronenspin, Kernspin, Hyperfeinzustände,

Anwendungen

Kernresonanzmethode

Zu untersuchende Probe im homogenen Magnetfeld; Hochfrequenzeinkopplung über eine Spule; bei Resonanz wird dem HF-Feld Energie entzogen; das Magnetfeld wird mit Zusatzspulen über die Resonanz "gewobbelt".

Felix Bloch Edward Purcell Nobelpreis 1952

aus Purcells Nobelpreisrede:

Chemical Shift: Proton-Resonanzen in unterschiedlichen chemischen Umgebungen (in CH₃, CH₂, OH)

Atomstrahlmethode nach Rabi

Isidor Isaac Rabi 1898 – 1988 Nobelpreis 1944

Ein Atomstrahl tritt divergent aus der Quelle Q aus; die untersuchten Teilchen fliegen in ein inhomogenes Magnetfeld A; je nach Einstellung des Spins werden die Teilchen im Gradientenfeld abgelenkt.

Eingezeichnet ist eine Teilstrahl mit Spin "nach oben", der so abgelenkt wird, dass er die Blende S im homogenen Magnetfeld C durchqueren kann und im zweiten inhomogenen Feld B (gegenüber A umgepolt) auf den Detektor D gelenkt wird.

Durch Einstrahlen der passenden Hochfrequenz HF können Spins zum Umklappen gebracht werden; die jetzt mit "verkehrter Spinrichtung" in B einlaufenden Teilchen werden von D weggelenkt, es kommt zu einer verringerten Nachweisrate bei D an der Resonanzfrequenz

Rabi-Resonanz Signal von Fluor-Kernen

Statt Durchstimmen der Frequenz wird hier Resonanz durch Variation des Magnetfelds erzielt.

$$\Delta \mathsf{E}_{\mathsf{magn}} = \mathsf{g}_{\mathsf{I}} \, \mu_{\mathsf{K}} \, \Delta \mathsf{m}_{\mathsf{I}} \; \mathsf{B} = \mathsf{h}_{\mathcal{V}}$$

Kernspin-Resonanz

Isidor Isaac Rabi 1898 – 1988 Nobelpreis 1944

Norman Ramsey 1915 – Nobelpreis 1989

Paul C. Lauterbur Sir Peter Mansfield 1929 – 2007 1933-Nobelpreis Medizin 2003

medizinische Bildgebung

Magnetresonanz-Tomographie (MRT):

Wasserstoff macht beim Menschen etwa 10% des Körpergewichts aus,

aber mehr als 60% aller Atome im Körper sind Wasserstoffatome

Praktisch alle dieser Atome haben als Kern ein Proton (H-2: nur 0,015%)

Umklappen von Protonenspins durch Einstrahlung der Resonanzfrequenz bei voreingestellten Magnetfeldern und Beobachtung der Relaxation gibt Information über das Körpergewebe, in welchem sich die Protonen befinden:

vom Gewebe abhängige Relaxationszeiten

 \rightarrow Kontrast bei der Darstellung

Prayer D, Brugger PC Speculum - Zeitschrift für Gynäkologie und Geburtshilfe 2005; 23 (2): 13-19 ©

Mehr Info, didaktisch gut aufbereitet: http://www.cis.rit.edu/htbooks/mri/index.html

Darstellung von Blutgefäßen mit MRT

Materialien, die unter Röntgenstrahlung wenig Kontrast liefern, können mit der Magnetresonanztomographie sichtbar gemacht werden

Hyperfeinstruktur von Caesium: Frequenznormal für Atomuhren Atomuhr-Übergang Kernspin ¹³³Cs: m_F = | = 7/22 E2 Konfiguration F = 4Energie der Atomhülle: $\Delta E = h \cdot v$ [Xe]6s ²S_{1/2} $v = 9192631770 \text{ s}^{-1}$ Hüllenspin: E₁ F=3J = 1/22 3 **Gesamtspin:** 1.10⁻⁵ T 0 $F = 7/2 \pm 1/2$ B_o

Schema einer Cs-Atomuhr

Atomuhrenhalle bei der PTB

Atomzustände im äußeren Magnetfeld

Der Zeemaneffekt: Linienaufspaltung in magnetischen Feldern

Pieter Zeeman Nobelpreis 1902

Zeeman Effekt auf der Sonne

Magnetkarte der Sonne

Spektralaufnahme im Bereich eines Sonnenflecks

Bereich des Sonnenflecks

Außerhalb des Sonnenflecks

Beobachtungen beim normalen Zeemaneffekt

Beobachtung des **parallel** zur z-Richtung emittierten Lichts (parallel zur Magnetfeldrichtung)

Beobachtung des **senkrecht** zur z-Richtung emittierten Lichts (senkrecht zur Magnetfeldrichtung)

Die beobachtete Strahlung ist bezüglich \vec{B} polarisiert

Termaufspaltung im Magnetfeld

Nomenklatur

π

Beobachtet wird elektrische Dipolstrahlung

- die emittierenden "Oszillatoren" bzw.
 Dipole stehen <u>senkrecht</u> zur z-Richtung bzw. zum Magnetfeld; die zugehörige Linie ist <u>rotverschoben</u>"
 - : die emittierenden "Oszillatoren" bzw. Dipole stehen **p**arallel zur z-Richtung bzw. zum Magnetfeld; die zugehörige Linie ist "unverschoben"
- σ⁺: die emittierenden "Oszillatoren" bzw. Dipole stehen <u>senkrecht</u> zur z-Richtung bzw. zum Magnetfeld; die zugehörige Linie ist "blauverschoben"

Dipolstrahlung besitzt charakteristische Winkelverteilungen

Eigenschaften des Photons

Eigendrehimpuls :
$$s_{ph} = \hbar$$

 $\vec{\sigma}$ Spinoperator des Photons

Links zirkular polarisiertes Photon:

Photonendrehimpuls +ħ in Ausbreitungsrichtung

Sieht man dem Photon entgegen, so dreht sich der elektrische Feldvektor der Welle gegen den Uhrzeigersinn: links zirkular

Helizität (allgemein): $H = \frac{\vec{p} \cdot \vec{\sigma}}{|\vec{p}||\vec{\sigma}|}$

Helizität des links zirkular polarisierten Photons:

H = +1

Eigenschaften des Photons

 $\vec{\sigma}$ Spinoperator des Photons

Rechts zirkular polarisiertes Photon:

Photonendrehimpuls +ħ entgegen der Ausbreitungsrichtung

Sieht man dem Photon entgegen, so dreht sich der elektrische Feldvektor der Welle im Uhrzeigersinn: **rechts zirkular**

Helizität des rechts zirkular polarisierten Photons:

H = -1

Winkelverteilungen von Dipolstrahlung

Der anomale Zeeman-Effekt, was ist anders?

 $\vec{\mu}_{J}$ und \vec{J} sind nicht mehr

einfach entgegengesetzt gerichtet

Der Landé-Faktor gJ des Gesamtdrehimpulses

Von $\vec{\mu}_J$ kann man nur die Projektion auf die Richtung von \vec{J} beobachten

$$\left(\vec{\mu}_{J}\right)_{J} = \left(\frac{\vec{\mu}_{J} \cdot \vec{J}}{\left|\vec{J}\right|}\right) \frac{\vec{J}}{\left|\vec{J}\right|}$$

$$\left(\vec{\mu}_{J}\right)_{J} = -g_{J}\frac{\mu_{B}}{\hbar}\vec{J}$$

Wegen der Richtungsquantelung von \mathbf{J} kann man nur die jeweilige z - Komponente von $(\vec{\mu}_J)_J$ messen

Niveau-Abstände beim anomalen Zeeman-Effekt

 $g_J = 2$

$$\begin{split} &\mathsf{E}_{\mathsf{magn}} = \left\langle \mathsf{V}_{\mathsf{magn}} \right\rangle \, = \, \mathsf{g}_{\mathsf{J}} \, \mu_{\mathsf{B}} \, \mathsf{m}_{\mathsf{J}} \, \, \mathsf{B} \\ &\mathsf{mit} \\ &\mathsf{g}_{\mathsf{J}} = \frac{3 \cdot \mathsf{J} \big(\mathsf{J} + 1\big) + \mathsf{S} \big(\mathsf{S} + 1\big) - \mathsf{L} \big(\mathsf{L} + 1\big)}{2 \cdot \mathsf{J} \big(\mathsf{J} + 1\big)} \end{split}$$

$$g_{J} \quad f \ddot{u} r \quad P_{3/2}$$

$$g_{J} = \frac{3 \cdot \frac{3}{2} \left(\frac{3}{2} + 1\right) + \frac{1}{2} \left(\frac{1}{2} + 1\right) - 1(1+1)}{2 \cdot \frac{3}{2} \left(\frac{3}{2} + 1\right)} = \frac{\frac{45}{4} + \frac{3}{4} - 2}{\frac{15}{2}} = \frac{4}{3}$$

 g_J für $S_{1/2}$ g_J für $P_{1/2}$

 $g_J = \frac{2}{3}$

Der anomale Zeeman-Effekt am Na D Duplett

Größe des anomalen Zeeman-Effekts bei Na D

Aufspaltung (in cm^{-1}) der D₁- und D₂-Linie in einem Magnetfeld von 3 T (Zeeman-Effekt)

Zeeman Gesamtaufspaltung bei 3T: etwa 20 bis 30 % der Feinstrukturaufspaltung Wellenfunktionen von Wasserstoffatomen in Magnetfeldern

Prof. Dr. H. Ruder, Tübingen

Paschen-Back Effekt

Friedrich Paschen (1865 - 1947)

Mit stärker werdendem magnetischem Feld B (und speziell für V_{magn} >> V_{LS})

- wächst die Kopplung der magnetischen Momente an B
- steigen die Präzessionsfrequenzen
- bricht schließlich die Spin-Bahn Kopplung auf, die magnetischen Momente des Gesamt-Bahndrehimpulses und des Gesamt-Spins präzedieren voneinander unabhängig um die Magnetachse

$$\begin{split} \vec{\mu} &= \vec{\mu}_L + \vec{\mu}_S \\ E_{magn} &= \left\langle V_{magn} \right\rangle \\ &= g_L \mu_B m_L B + g_S \mu_B m_S B \\ &= \mu_B B \left(m_L + 2 m_S \right) \end{split}$$

Das Natrium D Duplett bei verschiedenen Magnetfeldstärken

B=0: Spin-Bahn Aufspaltung

B schwach: Zusätzliche Zeeman-Aufspaltung

B stark: Entkopplung der magnetischen Momente und Übergänge mit $\Delta m_L=0,\pm 1$

Knappe Ergänzung: Atome im elektrischen Feld

Für konstante Feldstärke ergibt sich eine potentielle Energie in einem Wasserstoff-ähnlichen System

$$V(\vec{r}) = -eFx - \frac{Ze^2}{4\pi\epsilon_0 r}$$

Potenzial eines Atom im elektrischen Feld

Stark-Effekt: Linienaufspaltung im elektrischen Feld

Johannes Stark Nobelpreis 1919

Aufspaltung von Rydbergzuständen des Rubidium-Atoms im elektrischen Feld

-40 -30 -20 -10 0 10 20 30 40 E-Field (V/cm)

Kap. 14: Mehrelektronenatome

Termschema des Helium-Atoms

$$\vec{S} = \vec{s}_1 + \vec{s}_2$$
$$|s_2 - s_1| \le S \le s_2 + s_1$$
$$s_1 = s_2 = \frac{1}{2}$$

Singulettsystem:

S=0

Triplettsystem:

0

-1

-2

-3

-4

-5

-23

-24

-25

24.59

Energie E /eV

S=1

Pauliprinzip

Ein durch die 4 Quantenzahlen (n, ℓ , m_e, m_s) vollständig beschriebener Zustand eines Atoms kann höchstens von einem Elektron besetzt werden

Dies bedeutet nicht (entsprechend einem Umkehrschluss), dass bestimmte Terme wie etwa $(2p^2 \ ^1P_1)$ Pauli-erlaubt wären, nur weil sich dort die m_s-Werte unterscheiden müssen

Weitere Formen des Pauliprinzips

Ein Atom – Zustand mit den räumlichen Quantenzahlen (n, ℓ, m_{ℓ}) kann höchstens von zwei Elektronen besetzt werden, deren Spinquantenzahlen dann $m_s = +1/2$ bzw. $m_s = -1/2$ sind.

Die Gesamtwellenfunktion eines Systems mit N Elektronen ist immer antisymmetrisch bezüglich der Vertauschung zweier Elektronen, d.h.

 $\Psi(q_1, q_2, ..., q_i, ..., q_k, ..., q_{N-1}, q_N) = -\Psi(q_1, q_2, ..., q_k, ..., q_i, ..., q_N)$

Multipolstrahlung

Emission eines Photons beim Übergang von einem Zustand 1 in einen Zustand 2

 J_1, J_2 : Gesamtdrehimpulse

 π_1, π_2 : Paritäten der Zustände

 ℓ : Multipolordnung der Strahlung

$$\left| \mathsf{J}_2 - \mathsf{J}_1 \right| \leq \ell \leq \mathsf{J}_2 + \mathsf{J}_1$$

mögliche Werte für ℓ (1,2,3,4,...):

 $\ell = |J_2 - J_1|, |J_2 - J_1| + 1, ..., J_2 + J_1$

 $\ell = 0$ ist nicht möglich (für $J_2 - J_1 = 0$ kommt als Mindestwert $\ell = 1$ in Frage)

 $\begin{array}{l} J_{_1}=0 \rightarrow J_{_2}=0 \\ \text{ist streng verboten} \end{array}$

Auswahlregel für die Orientierungsquantenzahlen:

 $\Delta m = 0, \pm 1, \pm 2, \dots, \pm \ell$

mit

$$\mathbf{m}_{\ell} = \Delta \mathbf{m} = \mathbf{m}_{\mathbf{J}_1} - \mathbf{m}_{\mathbf{J}_2}$$

Multipolstrahlung bei elektromagnetischem Zerfall

Emission von $\mathbf{2}^{\ell}$ - Pol Strahlung (möglich ist ℓ = 1, 2, 3, 4, ...)

 $\pi_1 = (-1)^{\ell} \pi_2 : \quad \text{für } E\ell \text{ Strahlung (elektrische } 2^{\ell} - \text{Pol Strahlung)}$ $\pi_1 = (-1)^{\ell+1} \pi_2 : \quad \text{für } M\ell \text{ Strahlung (magnetische } 2^{\ell} - \text{Pol Strahlung)}$

bei elektrischer Dipolstrahlung (E1) ändert sich die Parität der betroffenen Zustände 1 und 2

bei magnetischer Dipolstrahlung (M1) ändert sich die Parität der betroffenen Zustände 1 und 2 nicht

bei elektrischer Quadrupolstrahlung (E2) ändert sich die Parität der betroffenen Zustände 1 und 2 nicht

USW.

Zustände und Übergänge in Heliumatomen

Zerfall angeregter Zustände in He-artigen Atomen

Die Übergangswahrscheinlichkeiten **"verbotener" Übergänge** steigen mit hohen Potenzen der Ordnungszahl Z (teilweise stärker als mit **Z**¹⁰).

"Erlaubte" Übergänge können im U⁹⁰⁺ Lebensdauern im Bereich von 10⁻¹⁷ s besitzen.

Von der LS- zur jj-Kopplung

Quasi-Zwei-Elektronen-Systeme: zwei Leuchtelektronen außerhalb komplett gefüllter Unterschalen

Resonante Photoionisation von Helium: Doppelanregung mit Autoionisation

Resonante Rekombination mit Erzeugung doppelt angeregten Helium-ähnlichen Urans U⁹⁰⁺(2I,2I⁺)

He I Grotrian Diagramm

einfach und doppelt angeregte Zustände im Helium

Vereinfachter Ansatz zur Beschreibung des Heliumatoms

Der allgemeine Ansatz

$$\left[-\frac{\hbar^2}{2m}\left(\Delta_1+\Delta_2\right)-\frac{e^2}{4\pi\epsilon_0}\left(\frac{Z}{r_1}+\frac{Z}{r_2}-\frac{1}{r_{12}}\right)\right]\Psi\left(\vec{r}_1,\vec{r}_2\right)=E\Psi\left(\vec{r}_1,\vec{r}_2\right)$$

wird vereinfacht zu einem Einteilchenansatz

$$\left[-\frac{\hbar^2}{2m}\left(\Delta_1+\Delta_2\right)-\frac{e^2}{4\pi\epsilon_0}\left(\frac{Z_{eff}}{r_1}+\frac{Z_{eff}}{r_2}\right)\right]\Psi\left(\vec{r}_1,\vec{r}_2\right)=E\Psi\left(\vec{r}_1,\vec{r}_2\right)$$

mit Z_{eff} =1.7, damit die gesamte Bindungsenergie der beiden als voneinander unabhängig betrachteten Elektronen im abgeschirmten Coulompotenzial gleich der gemessenen Bindungsenergie von 79 eV ist:

$$B = \left|E_{1} + E_{2}\right| = \left|-\frac{\left(Z_{eff}\right)^{2}}{n^{2}}13.6eV - \frac{\left(Z_{eff}\right)^{2}}{n^{2}}13.6eV\right| = 2 \cdot 1.7^{2} \cdot 13.6eV = 2 \cdot 39.5eV = 79eV$$

Ansatz mit Einteilchen-Wellenfunktionen

$$\left[-\frac{\hbar^2}{2m}\Delta_i - \frac{e^2}{4\pi\epsilon_0}\frac{Z_{eff}}{r_i}\right]\psi(\vec{r}_i) = E_i\psi(\vec{r}_i) \qquad i = 1,2$$

 Ψ

Die Lösungen dieser Gleichungen sind bekannt: (siehe Behandlung des Wasserstoffs nach Schrödinger)

Wasserstoff-Wellenfunktionen

$$\left(\vec{r}_{i}\right) = \psi_{n_{i}\ell_{i}m_{i}}\left(\vec{r}_{i}\right)$$

Produktansatz für Zwei-Elektronen-System :

$$\Psi_{ab}\left(\vec{r}_{1},\vec{r}_{2}\right)=\psi_{a}\left(\vec{r}_{1}\right)\cdot\psi_{b}\left(\vec{r}_{2}\right)$$

Wobei a und b Sätze von Quantenzahlen der einzelnen Elektronen beschreiben

Produkt-Wellenfunktion für He(1s²)

Bekannte Lösung für 1s Grundzustand:

$$\psi(\vec{r}_{i}) = \frac{1}{\sqrt{\pi}} \left(\frac{Z_{eff}}{a_{0}}\right)^{3/2} exp\left(-\frac{Z_{eff}}{a_{0}}r_{i}\right)$$

 a_0 : 1. Bohrscher Radius

Damit ergibt sich als Produktansatz für Helium im Grundzustand :

$$\Psi_{1s1s}(\vec{r}_{1},\vec{r}_{2}) = \psi_{1s}(\vec{r}_{1}) \cdot \psi_{1s}(\vec{r}_{2}) = \frac{1}{\pi} \left(\frac{1.7}{a_{0}}\right)^{3} \exp\left(-\frac{1.7}{a_{0}}(r_{1}+r_{2})\right)$$

Elektronenvertauschung Zustände nicht unterscheidbar

Sätze von Quantenzahlen

$$a = \begin{pmatrix} n_1 \ell_1 m_1 \end{pmatrix} \quad b = \begin{pmatrix} n_2 \ell_2 m_2 \end{pmatrix}$$

$$\Psi_{ab}^{I}\left(\vec{r}_{1},\vec{r}_{2}\right)=\psi_{a}\left(\vec{r}_{1}\right)\cdot\psi_{b}\left(\vec{r}_{2}\right)$$

$$\Psi_{ab}^{II}\left(\vec{r}_{1},\vec{r}_{2}\right)=\psi_{a}\left(\vec{r}_{2}\right)\cdot\psi_{b}\left(\vec{r}_{1}\right)$$

Nicht-Unterscheidbarkeit

Die beiden Zustände, die auseinander durch Vertauschung der Elektronen hervorgehen, sind nicht voneinander unterscheidbar, d.h.

$$\left|\Psi_{ab}^{I}\right|^{2}=\left|\Psi_{ab}^{II}\right|^{2}$$

Demnach gilt

$$\Psi_{ab}^{\mathsf{I}}=\boldsymbol{e}^{\mathsf{i}\boldsymbol{\phi}}\,\Psi_{ab}^{\mathsf{II}}$$

Mit Berücksichtigung der Tatsache, dass doppelte Vertauschung zum

Ursprungszustand zurückführt, ergibt sich $e^{2i\phi}=1 \quad \Rightarrow \quad \phi=0$, π

und damit:

$$\Psi^{\text{I}}_{\text{ab}}=\pm\Psi^{\text{II}}_{\text{ab}}$$

Der einfache Produktansatz leistet dies alleine nicht

Konstruktion des Ortsanteils der Wellenfunktion

mit Berücksichtigung der Nicht-Unterscheidbarkeit

Es lassen sich zwei Wellenfunktionen konstruieren, die der Bedingung $\Psi_{ab}^{\rm I}=\pm\Psi_{ab}^{\rm II}$ Rechnung tragen:

Eine symmetrische Version

$$\Psi_{Atom}^{s} = \Psi_{ab}^{I} + \Psi_{ab}^{II} = \psi_{a}\left(\vec{r}_{1}\right) \cdot \psi_{b}\left(\vec{r}_{2}\right) + \psi_{a}\left(\vec{r}_{2}\right) \cdot \psi_{b}\left(\vec{r}_{1}\right)$$

und eine antisymmetrische Version

$$\Psi_{Atom}^{a} = \Psi_{ab}^{I} - \Psi_{ab}^{II} = \psi_{a}\left(\vec{r}_{1}\right) \cdot \psi_{b}\left(\vec{r}_{2}\right) - \psi_{a}\left(\vec{r}_{2}\right) \cdot \psi_{b}\left(\vec{r}_{1}\right)$$

Kontrolle erfolgt leicht durch Vertauschen der beiden Elektronen

Sonderfall: beide Elektronen werden durch identische Quantenzahlen charakterisiert (a=b)

$$\begin{split} \Psi_{Atom}^{a} &= \psi_{a}\left(\vec{r}_{1}\right) \cdot \psi_{b}\left(\vec{r}_{2}\right) - \psi_{a}\left(\vec{r}_{2}\right) \cdot \psi_{b}\left(\vec{r}_{1}\right) \\ &= \psi_{a}\left(\vec{r}_{1}\right) \cdot \psi_{a}\left(\vec{r}_{2}\right) - \psi_{a}\left(\vec{r}_{2}\right) \cdot \psi_{a}\left(\vec{r}_{1}\right) \equiv 0 \end{split}$$

Die antisymmetrische Wellenfunktion wird identisch 0

Es existiert nur die symmetrische Wellenfunktion

$$\Psi_{Atom}^{s}=2\psi_{a}\left(\vec{r}_{1}\right)\cdot\psi_{b}\left(\vec{r}_{2}\right)$$

Was noch fehlt ist der Elektronenspin \vec{S}

Eigenschaften der physikalischen Größe "Spin"

quantenmechanischer Spinoperator S

Spin-Eigenfunktionen im Zwei-Elektronen-System

Ein Elektron:
$$\chi = \chi_{m_s}$$
 setze $\chi = \chi^-$ für $m_s = -\frac{1}{2}$
 $\chi = \chi^+$ für $m_s = +\frac{1}{2}$

Zwei Elektronen

$$\begin{aligned}
\vec{S}_{1} + \vec{S}_{2} &= \vec{S} & |S_{1} - S_{2}| \leq S \leq S_{1} + S_{2} \\
\Rightarrow S = 0, 1
\end{aligned}$$
Spin-Eigenfunktionen

$$\begin{aligned}
\vec{X}_{m_{S}}^{S} &= X_{0}^{0} & S = 0 & m_{S} = 0 \\
\vec{X}_{m_{S}}^{S} &= X_{1}^{1}, X_{0}^{1}, X_{-1}^{1} & S = 1 & m_{S} = +1, 0, -1
\end{aligned}$$

Spinfunktionen und Gesamtwellenfunktionen

$$\begin{split} X_{m_{S}}^{S} &= X_{0}^{0} = \frac{1}{\sqrt{2}} \Big[\chi^{+}(1)\chi^{-}(2) - \chi^{+}(2)\chi^{-}(1) \Big] & \text{antisymmetrisch} \\ &= X_{+1}^{1} = \chi^{+}(1)\chi^{+}(2) \\ &= X_{0}^{1} = \frac{1}{\sqrt{2}} \Big[\chi^{+}(1)\chi^{-}(2) + \chi^{+}(2)\chi^{-}(1) \Big] \\ &= X_{-1}^{1} = \chi^{-}(1)\chi^{-}(2) \end{split}$$

Pauli: die Gesamtwellenfunktion des Atoms ist antisymmetrisch gegen Vertauschung zweier Elektronen

$$\begin{split} \Psi_{\text{gesamt}} &= \Psi_{\text{Atom}}^{(\text{s},\text{a})} \cdot X_{\text{Spin}}^{(\text{a},\text{s})} \\ &= \Psi_{\text{n,L},\text{m}_{\text{L}}} \cdot X_{\text{m}_{\text{S}}}^{\text{S}} \end{split}$$

ノ

Wolfgang Pauli Nobelpreis 1945 für das nach ihm benannte Prinzip

1900 - 1958

Ionisierungsenergien der Atome

Schalenabschlüsse bei	He	Ne	Ar	Kr	Xe	Rn
Z =	= 2	10	18	36	54	86

Schalenaufbau der Atomhülle

Schale	К	L	М	N	Ο
Hauptquantenzahl n	1	2	3	4	5
Bahndrehimpuls Quantenzahlen {=0,,n-1	0	0 1	0 1 2	0 1 2 3	01234
Unterschalen	1s	2s 2p	3s 3p 3d	4s 4p 4d 4f	5s 5p 5d 5f 5g
Besetzung 2(2 <i>t</i> +1)	2	26	2 6 10	2 6 10 14	2 6 10 14 22
Gesamtzahl der Elektronen bis zur gefüllten Schale X	2	10	28	60	110

Spins bei der Besetzung der ersten 10 Unterschalen

Hundsche Regeln:

- 1. Voll besetzte Schalen tragen nicht zum Gesamtdrehimpuls bei
- 2. Im Grundzustand eines Atoms hat der Gesamtspin den größtmöglichen mit dem Pauli-Prinzip zu vereinbarenden Wert.

Beispiel Oktett-Grundzustand von Eu ([Ba] 4f⁷)

Europium im Grundzustand

NIST Atomic Spectra Database Levels Data

Energy Level Bibliography: Eu I (18 citations found)

Eu I 895 Lines of Data Found

Configuration	Term	J	Level (eV)	Lande-g	
4₹ 6s ²	⁸ S°	7 _{/2}	0.000	1.99340	
4r ⁷ (⁸ S°) 5d (⁹ D°) 6s	10 _{D°}	5/2 7/2 ^{9/2} ¹¹ /2 ¹³ /2	1.602337 1.617857 1.639324 1.668481 1.708338		

Reihenfolge bei der Besetzung der Unterschalen

Reihenfolge bei der Besetzung der Unterschalen

Kollaps von Wellenfunktionen mit hohem &

4f - Wellenfunktionen und effektive Potenziale schematisch

Bei hohen Bahndrehimpulsen zwei durch eine Barriere getrennte Potenzialsenken; bei höherem Z kann z.B. die 4f-Wellenfunktion in die innere Senke fallen

Schalenabschlüsse bei den Edelgasen

Edelgase haben ganz außen komplett gefüllte np⁶ Unterschalen

Ρ.	Orbitale	1s	2s 2p	3s 3p	4s 3d 4p	5s 4d 5p	6s 4f 5d 6p	7s5f6d7p
1	Helium [He]	2	STATIS.			S.S.M. S.S.M.		SS AND SA
2	Neon [Ne]	2	26	RESSER	15.715333	15.315,8528	5.35322355	15,822,83,85,31
3	Argon [Ar]	2	26	2 6				
4	Krypton [Kr]	2	26	2 6	2 10 6	Mangalary	NUTRESSEE STATE	Series Shine
5	Xenon [Xe]	2	2 6	26	2 10 6	2 10 6	and the second second	A STATE AND
6	Radon [Rn]	2	26	26	2 10 6	2 10 6	2 14 10 6	En and State
7	Ununoctium	2	26	26	2 10 6	2 10 6	2 14 10 6	2 14 10 6
			1	1	†	1	• • • • • • • • • • • • • • • • • • •	•
		2	8	8	18	18	32	32
		2	10	18	36	54	86	118