Nuclear astrophysics (fusion up to Fe, s-, p-, r- processes)

Julian Bergmann, 2022-01-18

Primordial Nucleosynthesis

- 10^{-30} s: 10^{25} K, quark gluon plasma
- 10^{-6} s: 10^{13} K, proton/neutron pair production
- 10^{-4} s: 10^{12} , pair production stops, free p/n annihilate
- 10^{-2} s: 10^{11} K, p \leftrightarrow n equilibrium, neutrino production
- 1 s; 10¹⁰ K, freeze out n:p=1:7, neutrino decouple from baryonic matter, cosmic v background
- 10-1000 s: 10⁹ -10⁷ K: d production, ⁴He formation, also ^{6,7}Li, ^{2,3}H, ³He, ^{7,8}Be. H:He=3:1
- 380 000 y: 4000 K: gravity> photon radiation, atoms form, universe transparent, cosmic microwave background radiation, no further absorption/emission = dark age
- 1 mio y: gravity instabilities in dark matter: gravity sinks for baryonic, larger structures form

Nuklear Fusion

 $G = \int_{R}^{r_{E}} \mathrm{d}r \frac{\sqrt{2m_{\alpha}(V(r) - E)}}{\hbar}$

 $n \longleftrightarrow p + e^- + \bar{\nu_e}$

 $\nu_e + n \longleftrightarrow p + e^-$

 $e^+ + n \longleftrightarrow p + \bar{\nu_e}$

- Coulomb potential repulses: barrier
- Thermal Energy (Maxwell Boltzmann distribution)
- Quantum tunnelling through barrier
- Overlap form Gamow area, Gamow Factor probability of Fusion

H Burning

•

- P-p-I chain 4 ${}^{1}\text{H} \rightarrow {}^{4}\text{He} + 2e^{+} + 2v_{e} + 2\gamma + 26.2 \text{ MeV}$
- $M > 0.08 M_{\odot}$, $\rho > 10 g/cm^3$, dominates if $M < 1.2 M_{\odot}$.
- Our sun: P-p-I: 91 %, p-p-II: 9 %, p-p-III: 0.1 %

He Burning

- 3α process for ¹²C: ⁸Be unstable, so 3 ⁴He needed
- $T > 10^8 K, M > 0.08 M_{\odot}$
- Exciteded hoyle state ${}^{12}C^*$ decays to base state 0.41 % probability
- Bottleneck for larger elements •

CNO cycle

- catalysts cycled: ¹³N, ¹⁴N, ¹⁵N, ¹²C, ¹³C, ¹⁵O
- $4^{1}\text{H} + 2e^{-} \rightarrow {}^{4}\text{He} + 2\nu_{e} + 7\gamma + 26.7 \text{ MeV}$
- Starts $15 \cdot 10^{6}$ K, dominant M > 1.3 M \odot , T > 17 \cdot 10^{6} K
- Our sun: 1.7% of He from CNO
- $^{12}C/^{13}C=3.5$

C, Ne, O, Si Burning

- Once fuel is used up: next process \rightarrow layers
- Each phase is hotter, denser and has shorter duration (2 ky, 0.7 y, 2.6 y, 18 d)
- C Burning: 2 ¹²C form ²⁴Mg*, decaying to ¹⁶O, ²⁴Mg, ²⁰ Ne and n
- Ne Burning: photodisintegration ${}^{20}Ne+\gamma \rightarrow {}^{6}O + {}^{4}He$, then ${}^{20}Ne^{+4}He \rightarrow {}^{24}Mg+\gamma$
- O Burning: double magic nucleus. Fusion of 2¹⁶O. 90% of final product ²⁸Si, ³²S
- Si Burning: a process, ⁴He capture up to ⁵⁶Ni, decay to ⁵⁶Fe
- After Si core collapse, ⁵⁶Fe most abundant, binding E max and product of α -process

S process

- Slow neutron capture (n density 10^{6} - 10^{11} /cm³, red giants)
- Captures n, decays with β -. Enough time to move along stability
- Nucleosynthesis almost 50% nuclides heavier than Fe. •
- Ends in Pb, Bi, Po due to alpha decay •
- Abundance proportional to $1/\sigma$
- Magic number, closed shell energetically favourable •
- Branching points where capture and decay rates similar
- Some Isotope shielded by stable nuclei from p-process
- $R = \frac{\lambda_{\beta}}{\lambda_n} = \frac{1}{\tau_{\beta} N_n \langle \sigma v \rangle_A}$ determines Neutron flux, temperature and density

R process

- Rapid neutron capture, Timescale 0.5-30 s.
- 10^{28} /cm³, 10^{9} K, core collapse supernova, star merger, nucl. Weapons
- N capture equilibrium with photodissociation ~ 2 MeV separation energy
- Waiting points for β decay •
- At m>270 spontaneous fission, then reiteration •
- Also 50% of nuclides heaver than Fe \rightarrow abundance difference natural s process
- After cooling down or neutron flux: decay to stable nuclei
- Abundance proportional to beta decay time

Event GW170817

- Gravitational wave detected in LIGO & VIRGO: two Heavy (1M_o), small object
- Also Optical spectra via Hubble a. o.: black body radiation missing Te/Cs
- Only via n capture \rightarrow two neutron stars
- Detected Gold Platinum, Strontium
- Improved hubble constant, general relativity, ratio speed of light • and gravity, proved neutron mergers cause short gamma ray bursts

P process

- Proton capture, p-nuclides generation
- Proton capture + β^+ decay against coulomb barrier (less abundance)
- $T>2\cdot 10^9$, high proton density, see nuclei form s/r, timescale 1 s
- P capture can not produce p-nuclides (photodissocation, too low N_p in core collapse supernovae)
- ~35 p-nuclides not by r/p process, maxima at magic numbers, even N, Z, only 1% abundance of s/r. •
- Not yet clear how they are produced
- γ process: (γ ,n), (γ , α) and (γ ,p), T~2·10⁹ K, abundance would match
- v process: excitation via neutrino + dissociation
- rp: rapid proton capture: requires 10^{28} p/cm³, T>2·10⁹ K (accreting neutron star)
 - Timescale 10 600 s, Waiting points ⁵⁶Ni, ⁶⁰Zn, ⁶⁴Ge, ⁶⁸Se 0
 - Stops at Sn-Sb-Te cycle (a-decay), m < 105 u0
- np: skip Waiting points by neutron reactions. Unlikely in high p rich areas
- vp: neutrino generates neutron to skip waiting points. Requires high flux of p and v

