

Cancer therapy with photons, protons and heavy ions

Julian Bergmann Justus-Liebig-University Gießen

Overview

- Introduction
- Overview
- Particles in radiation therapy
- Raster scan method
- Summary

Introduction

Motivation

- \rightarrow tumor therapy requires
	- \rightarrow affected tissues to be removed
	- \rightarrow spreading to get stopped
	- \rightarrow not killing the patient while doing that.
- \rightarrow chirurgic treatment needs accessibility to tumor
- \rightarrow chemical treatment stresses the overal body much
- \rightarrow radiation therapy can target more precisely

History

1895 Wilhelm Conrad Röntgen "a new kind of radiation"

1897 first medical treatment with X-rays

1957, Berkeley, first proton beam therapy

1975, Berkeley, first use of heavy ions.

1979, GSI Darmstadt, SIS12 (SIS18 in 1984) for 1.4 GeV/n

1993, Chiba, carbon beam therapy department founded

1993-97, GSI Darmstadt, carbon beam therapy facility founded

 \rightarrow development of raster scan procedure

 \rightarrow development of PET quality control

 \rightarrow measurements of ion species dependand RBE

2002, Hyogo, carbon beam facility founded

2009, Heidelberg, HIT carbon beam facility, \sim 500 patients per year

2012, Kiel, and 2015 in Marburg, carbon beam facility founded

Ionizing particles hit Cell

- \rightarrow Low energy transfer creates oxygen radicals
- \rightarrow DNA gets damaged beyond repair
- \rightarrow Cell division is disturbed (mitotic cell death)
- \rightarrow Cell dies (Apoptosis, blebbing, nucleus fragmentation)

Effectiveness depends on:

- \rightarrow deposited energy
	- \rightarrow Choice of particles
	- \rightarrow technical application
- \rightarrow biological reaction to particle

Particle in Radiation Therapy

Particles used for radiation therapy:

- \rightarrow Photons
- \rightarrow Electrons
- \rightarrow Neutrons
- \rightarrow Protons
- \rightarrow lons

Particle Interaction: Photons

Photons (<23MeV)

- \rightarrow Easy to produce
- \rightarrow Xrays (~120 keV) mostly photoeffect
- \rightarrow energy deposition exponentially decreasing
- \rightarrow additional energy deposition by secondary electrons
- \rightarrow healthy tissue before and after target tissue is affected

Photoeffect: bound electron absorbs photon and gets released $E_{kin} = h \cdot f - E_{\text{Bindung}}$

Compton: photon scatters at free electron and looses energy

$$
\Delta\lambda = \frac{h}{m_e c} (1 - \cos\phi) = \lambda_C (1 - \cos\phi) .
$$

Pair production: if $E_{\gamma}>2m_ec^2$, a electron positron pair can be produced

inside the field of a nucleus

Particle Interaction: Electrons

Electrons

- \rightarrow high energy: Bremsstrahlung
- \rightarrow low energy: ionisation and excitation.
- \rightarrow maximum range (\sim 0.5 cm/MeV)
- \rightarrow less energy deposition per collision than photons
- \rightarrow elastic collision lead to additional beam spread

Particle Interaction: Protons

Protons

- \rightarrow produced by particle accelerator
- \rightarrow high energy: inelastic collisions with target electrons
- \rightarrow lower energy: inelastic collisions with nuclei
- \rightarrow elastic scattering at nuclei: beam spread
- \rightarrow energy deposition decreases with square of velocity
- \rightarrow result: proton slows down until stop at energy deposition peak
	- \rightarrow "Bragg peak"

$$
\frac{1}{\rho}\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]
$$

- \rightarrow low dose until maximum bragg peak, afterwards 0 dosage
- \rightarrow bragg peak position depending on proton energy
- \rightarrow less lateral scattering than X-Rays or electrons

Particle Interaction: Ions

Ions

- \rightarrow similar processes as protons
- \rightarrow higher mass
	- \rightarrow less inelastic scattering per dx
	- \rightarrow less dE/dx until bragg peak
	- \rightarrow little lateral scatter effect
- \rightarrow higher linear energy transfer (LET) at bragg peak
	- \rightarrow much narrower bragg peak
	- \rightarrow also direkt cell damage effect by nuclear collision
- \rightarrow nuclear reactions with tissue: $dE/dx > 0$ behind bragg peak
- \rightarrow higher energy needed for same bragg peak distance
- \rightarrow common: carbon ions

 \rightarrow highest overlap between biological effectiveness and energy deposition

Particle Interaction: Comparison

Particle Interaction: Neutrons

Neutrons

- \rightarrow need nuclear reaction to produce (reactors, cyclotrons)
- \rightarrow collisions at low energy produce protons in tumor cell
- \rightarrow better for low oxygen cells
- \rightarrow only 1/3 effective dose of protons needed
- \rightarrow similar deposition curve as X-Rays
- \rightarrow using Bor in cell can be more effective:

 $n + {}^{10}B \longrightarrow {}^{7}Li + \alpha$

- \rightarrow cell gets destroyed directly
- \rightarrow most dF is at surface
- \rightarrow high biological effectiveness and bad in depth dose distribution means high damage at healthy cells

Raster Scan Method: Idea

Idea:

Problem:

- \rightarrow dipolmagnets scan tissue lateral
- \rightarrow protons/ions: energy determines depth (bragg peak)

- \rightarrow minimize energy deposition at healthy tissues
- \rightarrow tissue species reacts differently to same dosage
- \rightarrow hard to target moving body parts (e.g. lung, intestines)

Raster Scan Method: RBE

RBE: Relative Biological Effectivenes

- R \overline{a} \rightarrow quotient of dose to a reference type of radiation with same biological effect.
- \rightarrow increases with LET (DNA double-strand breaks)
- \rightarrow highly depends on ion species and type of tissue
- \rightarrow biological effective dose = RBE * energy deposition
- \rightarrow determined experimental
- \rightarrow carbon has RBE maximum at bragg peak

History of the heavy ion therapy at GSI. Kraft G, courtesy Michael Kraemer, GSI

Wilma K. Ewyrather, Gerhard Kraft, GSI Darmstadt – Abt. Biophysik

Raster Scan Method: Spread Out Bragg Peak

Spread out bragg peak:

- \rightarrow overlaying ion beams with different energies
- \rightarrow spreading bragg peak longitudinal
- \rightarrow keeping target-dose constant
- \rightarrow minimizing collateral dose

Raster Scan Method: Application

Raster Scan procedure

- \rightarrow tumor division into slices
	- \sim 100 slices
- \rightarrow each slice is divided into raster cells
	- \sim 10 30000 raster cells per slice
- \rightarrow beam diameter \sim 3 raster cells
- \rightarrow from RBE & energy deposition,
	- to be applied energy is computed

Example:

- \rightarrow complete application time: 5-10 min
- \rightarrow daily application for 20 days
- \rightarrow beam size \sim 6 mm

Tumortherapie mit schweren Ionen, GSI, Gerhard Kraft

Raster Scan method: PET

PET (Positron Emission Tomography) Verification:

- \rightarrow quality control: which dosage was applied where
- \rightarrow nuclear collisions produce instabile atoms.
- \rightarrow ¹⁰C, ¹¹C and ¹⁵O decay emitting positrons
- \rightarrow positrons decay into 2 gamma \sim 511 keV
- \rightarrow detection gives estimate of beam particle reach

Facilities

- \rightarrow during 2013 105.000 patients successfully treated with protons
- \rightarrow 13.000 patients per year treated by heavy ions
- \rightarrow ~ 49 working proton beam facilities
- \rightarrow ~ 10 working ion beam facilities using carbon

Summary

- \rightarrow radiation therapy is nowadays established cancer therapy method
	- \rightarrow photons, electrons, neutrons, protons and ions
- \rightarrow heavy ion beams promise to be most effective method (situational)
- \rightarrow RBE, raster scan method and PET further increases precision
- \rightarrow facilities for heavy ion beam production are still expensive, but centers are build all over the world

Papers and references

History of the heavy ion therapy at GSI. Kraft G. https://three.jsc.nasa.gov/articles/Krafts_GSI.pdf. Date posted: 04-26-2013.

Forschungsreaktor FRM II: Krebsbehandlung mit Neutronen fragwürdig, Karin Wurzbacher, 2003, Umweltinstitut München

Wechselwirkung und Reichweite von Strahlung, Hartmut Zabel, 2003, Presentation

Physik der Partikeltherapie, Petra Knappe-Kagan, 2012, Institut für Medizinische Physik Klinikum Nürnberg, Presentation

Tumortherapie mit Ionenstrahlen, Gerhard Kraft, 2005, Biophysik GSI Darmstadt

Particle Beam Cancer Therapy: The Promise and Challenges, 2014, Karen McNulty Walsh, article on RHIC website: <https://www.bnl.gov/rhic/news2/news.asp?a=4672&t=today>

Passage of particles through matter, 2013, . Beringer et al. (PDG), http://pdg.lbl.gov/2013/reviews/rpp2013-rev-passage-particles-matter.pdf